The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans.

To assess the relationship between melanin production by Cryptococcus neoformans and virulence on a molecular basis, we asked: (a) is CNLAC1, the laccase structural gene of C. neoformans, expressed in vivo?; (b) can mouse virulence be restored to cnlac1 (Mel-) mutants by complementation with CNLAC1?; and (c) will targeted gene deletion of CNLAC1 decrease virulence for mice? Melanin is produced when cryptococcal laccase catalyzes the oxidation of certain aromatic compounds, including L-dopa, to quinones, which then polymerize to melanin. To assess CNLAC1 transcription, RNA was extracted from C. neoformans in cerebrospinal fluid of infected rabbits. Reverse transcriptase-polymerase chain reaction detected CNLAC1 transcript, indicating that laccase may be produced in the infected host. To assess the effect of CNLAC1 deletion on virulence, a Mel- mutant ( 10S) was obtained by disruption of the 5' end of the gene. After multiple backcrosses with a parental strain to remove unintended genetic defects introduced by the transformation process, a Mel- progeny was tested and found to be much less virulent for mice than a Mel+ progeny. Another Mel- strain (mel2), obtained from J.C. Edman (University of California at San Francisco, CA), produced CNLAC1 transcript but no detectable melanin. Characterization of this mutant revealed a base substitution in CNLAC1 that changed a histidine to tyrosine in a putative copper-binding site. When this base change was introduced into CNLAC1 by site-directed mutagenesis, it no longer transformed mel2 to Mel+, indicating the importance of this histidine in laccase activity. Complementation of a mel2-derived mutant with CNLAC1 restored the Mel+ phenotype and increased virulence. These results support the concept that the CNLAC1 gene product has a role in virulence.[1]

References

  1. Effect of the laccase gene CNLAC1, on virulence of Cryptococcus neoformans. Salas, S.D., Bennett, J.E., Kwon-Chung, K.J., Perfect, J.R., Williamson, P.R. J. Exp. Med. (1996) [Pubmed]
 
WikiGenes - Universities