The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Continuous monitoring of Pi release following nucleotide hydrolysis in actin or tubulin assembly using 2-amino-6-mercapto-7-methylpurine ribonucleoside and purine-nucleoside phosphorylase as an enzyme-linked assay.

ATP and GTP are hydrolyzed during self-assembly of actin and tubulin, respectively. It is known that nucleotide is hydrolyzed on the polymer in two consecutive steps, chemical cleavage of the gamma-phosphate followed by the slower release of Pi. This last step has been shown to play a crucial role in the dynamics of actin filaments and microtubules. Thus far, evidence for a transient GDP-Pi state in microtubule assembly has been obtained using a glass fiber filter assay that had a poor time resolution [Melki, R., Carlier, M.-F., & Pantaloni, D. (1990) Biochemistry 29, 8921-8932]. We have used a new Pi assay [Webb, M. R. (1992) Proc. natl. Acad. Sci. U.S.A. 89, 4884-4887], in which the purine phosphorylase catalyzes the phosphorolysis of 2-amino-6-mercapto-7-methylpurine ribonucleoside (MESG) into mercaptopurine and ribose phosphate, which is accompanied by an increase in absorbance. This enzyme-linked assay has been used to follow the release of Pi during polymerization of Mg-actin. A value of 350 s was found for the half-time for Pi release on F-actin, in good agreement with previous determinations. The release of Pi following GTP hydrolysis in microtubule assembly was followed using a stopped-flow apparatus. Rapid microtubule assembly was achieved using taxol. The use of a stopped-flow apparatus permitted the continuous recording, with a dead time of 0.8 ms, of both time courses of microtubule assembly and Pi release with greatly improved time resolution. The release of Pi developed with a short lag (35 and 2 s for G-actin and tubulin, respectively) following assembly and appeared 50-fold faster on microtubules than on actin filaments.[1]

References

 
WikiGenes - Universities