The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Quantitative analysis of the metabolism of soluble cytoplasmic peptidoglycan precursors of glycopeptide-resistant enterococci.

Transposon Tn1546 from Enterococcus faecium BM4147 mediates high-level resistance to the glycopeptide antibiotics vancomycin and teicoplanin. Tn 1546 encodes a dehydrogenase (VanH) and a ligase (VanA) that synthesize D-alanyl-D-lactate (D-Ala-D-Lac), a D,D-dipeptidase (VanX) that hydrolyses D-Ala-D-Ala and a two-component regulatory system (VanR-VanS) that controls transcription of the vanHAX operon. Strains of Enterococcus faecalis harbouring various copy numbers of the vanRSHAX cluster were tested to determine if there was a correlation between the levels of resistance to glycopeptides, the levels of expression of the corresponding resistance genes and the relative proportions of the different cytoplasmic peptidoglycan precursors. Increased transcription of the vanHAX operon was associated with increased incorporation of D-Ala-D-Lac into peptidoglycan precursors to the detriment of D-Ala-D-Ala, and with a gradual increase in the vancomycin-resistance levels. More complete elimination of D-Ala-D-Ala-containing precursors was required for teicoplanin resistance. The VanY and VanZ proteins also encoded by Tn1546 were not effectors of the regulation of the vanHAX operon but contributed to vancomycin and teicoplanin resistance, respectively. Differences at the regulatory level accounted for phenotypic diversity in acquired glycopeptide resistance by production of D-lac-ending precursors.[1]

References

 
WikiGenes - Universities