The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Vancomycin Resistance

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Vancomycin Resistance

 

High impact information on Vancomycin Resistance

 

Chemical compound and disease context of Vancomycin Resistance

 

Biological context of Vancomycin Resistance

 

Anatomical context of Vancomycin Resistance

 

Associations of Vancomycin Resistance with chemical compounds

  • Whereas major advances have been made in our understanding of methicillin and vancomycin resistance mechanisms, we still need to identify the sources and reservoirs of the genetic determinants of resistance and to discover how they disseminate in the environment [24].
  • Antibiotic resistances among the infections included high-level gentamicin resistance (26%), ampicillin resistance (10%), and vancomycin resistance (8%) [25].
  • These combined observations reflect the relationship which seems to exist between the new D-lactate peptidoglycan precursor, synthesized when the vancomycin resistance is expressed, and the affinity of the different PBPs for this precursor [26].
  • In terms of resistance (highest concentration of antibiotic permitting growth), the levels of vancomycin resistance of six strains ranged from 0.2 to 1.0 microgram/ml, and the level of erythromycin resistance of these strains was 0.02 or 0.05 micrograms/ml [27].
  • The results indicate that mecA--the genetic determinant of oxacillin resistance--while essential for oxacillin resistance, is not involved with the expression of vancomycin resistance [28].
 

Gene context of Vancomycin Resistance

 

Analytical, diagnostic and therapeutic context of Vancomycin Resistance

References

  1. The development of vancomycin resistance in a patient with methicillin-resistant Staphylococcus aureus infection. Sieradzki, K., Roberts, R.B., Haber, S.W., Tomasz, A. N. Engl. J. Med. (1999) [Pubmed]
  2. Phosphinate analogs of D-, D-dipeptides: slow-binding inhibition and proteolysis protection of VanX, a D-, D-dipeptidase required for vancomycin resistance in Enterococcus faecium. Wu, Z., Walsh, C.T. Proc. Natl. Acad. Sci. U.S.A. (1995) [Pubmed]
  3. Emergence of vancomycin resistance in the genus Streptococcus: characterization of a vanB transferable determinant in Streptococcus bovis. Poyart, C., Pierre, C., Quesne, G., Pron, B., Berche, P., Trieu-Cuot, P. Antimicrob. Agents Chemother. (1997) [Pubmed]
  4. Lactate racemization as a rescue pathway for supplying D-lactate to the cell wall biosynthesis machinery in Lactobacillus plantarum. Goffin, P., Deghorain, M., Mainardi, J.L., Tytgat, I., Champomier-Vergès, M.C., Kleerebezem, M., Hols, P. J. Bacteriol. (2005) [Pubmed]
  5. Gram-positive bacteria: spread and antimicrobial resistance in university and community hospitals in the USA. McGowan, J.E. J. Antimicrob. Chemother. (1988) [Pubmed]
  6. The structure of VanX reveals a novel amino-dipeptidase involved in mediating transposon-based vancomycin resistance. Bussiere, D.E., Pratt, S.D., Katz, L., Severin, J.M., Holzman, T., Park, C.H. Mol. Cell (1998) [Pubmed]
  7. Vancomycin analogues active against vanA-resistant strains inhibit bacterial transglycosylase without binding substrate. Chen, L., Walker, D., Sun, B., Hu, Y., Walker, S., Kahne, D. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  8. The molecular basis of vancomycin resistance in clinically relevant Enterococci: crystal structure of D-alanyl-D-lactate ligase (VanA). Roper, D.I., Huyton, T., Vagin, A., Dodson, G. Proc. Natl. Acad. Sci. U.S.A. (2000) [Pubmed]
  9. D-Ala-D-Ala ligases from glycopeptide antibiotic-producing organisms are highly homologous to the enterococcal vancomycin-resistance ligases VanA and VanB. Marshall, C.G., Broadhead, G., Leskiw, B.K., Wright, G.D. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  10. Altered recognition mutants of the response regulator PhoB: a new genetic strategy for studying protein-protein interactions. Haldimann, A., Prahalad, M.K., Fisher, S.L., Kim, S.K., Walsh, C.T., Wanner, B.L. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  11. Predicting methicillin resistance and the effect of inadequate empiric therapy on survival in patients with Staphylococcus aureus bacteremia. Roghmann, M.C. Arch. Intern. Med. (2000) [Pubmed]
  12. Restoration of vancomycin susceptibility in Enterococcus faecalis by antiresistance determinant gene transfer. Torres Viera, C., Tsiodras, S., Gold, H.S., Coakley, E.P., Wennersten, C., Eliopoulos, G.M., Moellering, R.C., Inouye, R.T. Antimicrob. Agents Chemother. (2001) [Pubmed]
  13. Geographic distribution of a large mobile element that transfers ampicillin and vancomycin resistance between Enterococcus faecium strains. Hanrahan, J., Hoyen, C., Rice, L.B. Antimicrob. Agents Chemother. (2000) [Pubmed]
  14. Rapid detection of vancomycin-resistant enterococci. Edberg, S.C., Hardalo, C.J., Kontnick, C., Campbell, S. J. Clin. Microbiol. (1994) [Pubmed]
  15. Impact of sigB mutation on Staphylococcus aureus oxacillin and vancomycin resistance varies with parental background and method of assessment. Singh, V.K., Schmidt, J.L., Jayaswal, R.K., Wilkinson, B.J. Int. J. Antimicrob. Agents (2003) [Pubmed]
  16. Contribution of VanY D,D-carboxypeptidase to glycopeptide resistance in Enterococcus faecalis by hydrolysis of peptidoglycan precursors. Arthur, M., Depardieu, F., Snaith, H.A., Reynolds, P.E., Courvalin, P. Antimicrob. Agents Chemother. (1994) [Pubmed]
  17. Genetic characterization of vanG, a novel vancomycin resistance locus of Enterococcus faecalis. McKessar, S.J., Berry, A.M., Bell, J.M., Turnidge, J.D., Paton, J.C. Antimicrob. Agents Chemother. (2000) [Pubmed]
  18. Comparison of Tn1546-like elements in vancomycin-resistant Staphylococcus aureus isolates from Michigan and Pennsylvania. Clark, N.C., Weigel, L.M., Patel, J.B., Tenover, F.C. Antimicrob. Agents Chemother. (2005) [Pubmed]
  19. In vivo emergence of subpopulations expressing teicoplanin or vancomycin resistance phenotypes in a glycopeptide-susceptible, methicillin-resistant strain of Staphylococcus aureus. Vaudaux, P., Francois, P., Berger-Bächi, B., Lew, D.P. J. Antimicrob. Chemother. (2001) [Pubmed]
  20. High prevalence of VanB2 vancomycin-resistant Enterococcus faecium in Taiwan. Lu, J.J., Perng, C.L., Ho, M.F., Chiueh, T.S., Lee, W.H. J. Clin. Microbiol. (2001) [Pubmed]
  21. Staphylococcus heterogeneously resistant to vancomycin in China and antimicrobial activities of imipenem and vancomycin in combination against it. Benquan, W., Yingchun, T., Kouxing, Z., Tiantuo, Z., Jiaxing, Z., Shuqing, T. J. Clin. Microbiol. (2002) [Pubmed]
  22. In-vitro synergy and mechanism of interaction between vancomycin and ciprofloxacin against enterococcal isolates. Unal, S., Flokowitsch, J., Mullen, D.L., Preston, D.A., Nicas, T.I. J. Antimicrob. Chemother. (1993) [Pubmed]
  23. Enzymes of vancomycin resistance: the structure of D-alanine-D-lactate ligase of naturally resistant Leuconostoc mesenteroides. Kuzin, A.P., Sun, T., Jorczak-Baillass, J., Healy, V.L., Walsh, C.T., Knox, J.R. Structure (2000) [Pubmed]
  24. Methicillin-resistant Staphylococcus aureus and vancomycin-resistant enterococci: therapeutic realities and possibilities. Michel, M., Gutmann, L. Lancet (1997) [Pubmed]
  25. An analysis of 110 serious enterococcal infections. Epidemiology, antibiotic susceptibility, and outcome. Patterson, J.E., Sweeney, A.H., Simms, M., Carley, N., Mangi, R., Sabetta, J., Lyons, R.W. Medicine (Baltimore) (1995) [Pubmed]
  26. Synergy and resistance to synergy between beta-lactam antibiotics and glycopeptides against glycopeptide-resistant strains of Enterococcus faecium. Gutmann, L., al-Obeid, S., Billot-Klein, D., Guerrier, M.L., Collatz, E. Antimicrob. Agents Chemother. (1994) [Pubmed]
  27. Vancomycin hypersusceptibility in Neisseria gonorrhoeae isolated from patients involves diverse mutations. Koelbl, J.A., Catlin, B.W. Antimicrob. Agents Chemother. (1986) [Pubmed]
  28. Penicillin-binding protein 2 is essential for expression of high-level vancomycin resistance and cell wall synthesis in vancomycin-resistant Staphylococcus aureus carrying the enterococcal vanA gene complex. Severin, A., Wu, S.W., Tabei, K., Tomasz, A. Antimicrob. Agents Chemother. (2004) [Pubmed]
  29. Role of mobile DNA in the evolution of vancomycin-resistant Enterococcus faecalis. Paulsen, I.T., Banerjei, L., Myers, G.S., Nelson, K.E., Seshadri, R., Read, T.D., Fouts, D.E., Eisen, J.A., Gill, S.R., Heidelberg, J.F., Tettelin, H., Dodson, R.J., Umayam, L., Brinkac, L., Beanan, M., Daugherty, S., DeBoy, R.T., Durkin, S., Kolonay, J., Madupu, R., Nelson, W., Vamathevan, J., Tran, B., Upton, J., Hansen, T., Shetty, J., Khouri, H., Utterback, T., Radune, D., Ketchum, K.A., Dougherty, B.A., Fraser, C.M. Science (2003) [Pubmed]
  30. The emergence of Staphylococcus aureus with reduced susceptibility to vancomycin in Japan. Hiramatsu, K. Am. J. Med. (1998) [Pubmed]
  31. Silencing of glycopeptide resistance in Enterococcus faecalis BM4405 by novobiocin. Patiño, L.A., Chippaux, M., Courvalin, P., Périchon, B. Antimicrob. Agents Chemother. (2005) [Pubmed]
  32. tcaA inactivation increases glycopeptide resistance in Staphylococcus aureus. Maki, H., McCallum, N., Bischoff, M., Wada, A., Berger-Bächi, B. Antimicrob. Agents Chemother. (2004) [Pubmed]
  33. Screening for enterocins and detection of hemolysin and vancomycin resistance in enterococci of different origins. De Vuyst, L., Foulquié Moreno, M.R., Revets, H. Int. J. Food Microbiol. (2003) [Pubmed]
  34. Characterization of a highly glycopeptide-resistant Enterococcus gallinarum isolate. Lu, J.J., Wu, J.C., Chiueh, T.S., Perng, C.L., Chi, W.M., Lee, W.H. J. Formos. Med. Assoc. (2000) [Pubmed]
 
WikiGenes - Universities