The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Gamma scintigraphy of a 123I-labelled N-(2-hydroxypropyl)methacrylamide copolymer-doxorubicin conjugate containing galactosamine following intravenous administration to nude mice bearing hepatic human colon carcinoma.

Polymer drug conjugates composed of N-(2-Hydroxypropyl)methacrylamide (HPMA) copolymer covalently bound doxorubicin, and containing additionally galactosamine to facilitate hepatocyte-specific targeting (HPMA copolymer-dox-gal), were synthesised to contain a small amount (approximately 1 mol%) of the monomer methacryloyltyrosinamide to permit radioiodination with [123I]iodide. After intravenous administration to both normal mice and nude mice bearing hepatic human colon carcinoma, the biodistribution of the conjugate was monitored using the gamma camera, and also by dissection analysis. Efficient liver accumulation of HPMA copolymer-dox-gal was seen in the gamma camera images within 20 min, both in normal and tumour-bearing animals. Quantitatively liver uptake was approximately 40% dose administered/g liver. Images of the tumour-bearing animals showed clearly a much lower accumulation of HPMA copolymer-dox-gal in the colon carcinoma deposits within the liver (3-9% dose/g tumour), and this lack of uptake was verified by ex vivo imaging of the tumour-containing liver and also by dissection analysis. It can be concluded that 123I-labelled HPMA copolymer conjugates offer great potential as effective imaging agents and can be used for future non-invasive clinical studies. This nuclear imaging method will enable optimisation of the dosing schedule by identification of doses of HPMA copolymer-dox-gal that display receptor saturation (and hence diminished targeting efficiency). In addition this conjugate can provide negative images of liver-associated tumour deposits that do not express the asialoglycoprotein receptor.[1]

References

 
WikiGenes - Universities