The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Conserved high-affinity NF-kappa B binding site in the interferon regulatory factor-1 promoter is not occupied by NF-kappa B in vivo and is transcriptionally inactive.

The promoter of the interferon regulatory factor-1 (IRF-1) gene contains at position -47 to -38 an evolutionary conserved binding sequence for the inducible transcription factor NF-kappa B. This site is highly homologous to a transcriptionally active site from the MHC class I enhancer. In this study, we show by in vitro assays using purified NF-kappa B that the kappa B motif in the IRF-1 promoter binds the factor specifically and with high affinity, comparable to various other cis-acting kappa B elements. Two copies of the IRF-1 kappa B site fused to the heterologous c-fos promoter conferred induction of a chloramphenicol acetyl transferase (CAT) reported gene in response to stimulation of L929 fibroblasts with various NF-kappa B inducers, such as tumor necrosis factor alpha (TNF alpha) or phorbol 12-myristate 13-acetate (PMA). Mutation of the binding site completely abolished transcriptional inducibility of the heterologous promoter. Surprisingly, the same IRF-1 kappa B motif in context of the homologous IRF-1 promoter was transcriptionally inactive in CAT assays. The very weak induction of the IRF-1 promoter in response to TNF treatment or infection of fibroblasts with Newcastle disease virus (NDV) was barely affected by point mutation of the kappa B site or loss of the site by truncation of the promoter. Analysis of the occupational state of the chromosomal IRF-1 kappa B site by in vivo foot-printing revealed that no footprint was induced over the kappa B motif in the IRF-1 promoter after PMA treatment of L929 fibroblast cells, despite the simultaneous induction of IRF-1 mRNA and NF-kappa B binding activity. Constitutive footprints were detected at a CCAAT and GC-rich region in the promoter. This is the first example of a high-affinity NF-kappa B binding site within a promoter which may not participate in transcriptional regulation under conditions activating NF-kappa B DNA binding and gene expression.[1]

References

 
WikiGenes - Universities