Conserved high-affinity NF-kappa B binding site in the interferon regulatory factor-1 promoter is not occupied by NF-kappa B in vivo and is transcriptionally inactive.
The promoter of the interferon regulatory factor-1 (IRF-1) gene contains at position -47 to -38 an evolutionary conserved binding sequence for the inducible transcription factor NF-kappa B. This site is highly homologous to a transcriptionally active site from the MHC class I enhancer. In this study, we show by in vitro assays using purified NF-kappa B that the kappa B motif in the IRF-1 promoter binds the factor specifically and with high affinity, comparable to various other cis-acting kappa B elements. Two copies of the IRF-1 kappa B site fused to the heterologous c-fos promoter conferred induction of a chloramphenicol acetyl transferase (CAT) reported gene in response to stimulation of L929 fibroblasts with various NF-kappa B inducers, such as tumor necrosis factor alpha (TNF alpha) or phorbol 12-myristate 13-acetate (PMA). Mutation of the binding site completely abolished transcriptional inducibility of the heterologous promoter. Surprisingly, the same IRF-1 kappa B motif in context of the homologous IRF-1 promoter was transcriptionally inactive in CAT assays. The very weak induction of the IRF-1 promoter in response to TNF treatment or infection of fibroblasts with Newcastle disease virus (NDV) was barely affected by point mutation of the kappa B site or loss of the site by truncation of the promoter. Analysis of the occupational state of the chromosomal IRF-1 kappa B site by in vivo foot-printing revealed that no footprint was induced over the kappa B motif in the IRF-1 promoter after PMA treatment of L929 fibroblast cells, despite the simultaneous induction of IRF-1 mRNA and NF-kappa B binding activity. Constitutive footprints were detected at a CCAAT and GC-rich region in the promoter. This is the first example of a high-affinity NF-kappa B binding site within a promoter which may not participate in transcriptional regulation under conditions activating NF-kappa B DNA binding and gene expression.[1]References
- Conserved high-affinity NF-kappa B binding site in the interferon regulatory factor-1 promoter is not occupied by NF-kappa B in vivo and is transcriptionally inactive. Rein, T., Schreck, R., Willenbrink, W., Neubert, W.J., Zorbas, H., Bäuerle, P.A. J. Inflamm. (1995) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg