Matrix metalloproteinases and TIMPS in cultured C57BL/6J-cpk kidney tubules.
Restructuring of basement membranes is a hallmark of the pathology of renal cystic disorders. Here, we present findings consistent with the view that basement membrane degradation by matrix metallo-proteinases (MMPs) may contribute to abnormal basement membrane structure in polycystic kidney disease. Cells from cystic kidney tubules embedded in collagen gels appeared to migrate through the gel. This migration through collagen indicated that these cells could degrade the matrix. To examine this activity, we cultured cystic kidney tubules derived from the C57BL/6J cpk/cpk mouse, a hereditary model of polycystic kidney disease, and assayed conditioned medium for the presence of MMPs and tissue inhibitors of metalloproteinases (TIMPs). The conditioned medium from the cystic tubules contained higher than normal levels of MMP-9, MMP-2, and MMP-3 as well as TIMP-1 and TIMP-2. A 101 kDa protease was present equally in cystic and control cultures and although inhibited by EDTA, it was not inhibited by TIMPs, nor activated by the mercurial compound APMA. These data suggest that cystic kidney tubules synthesize and secrete high levels of MMPs which may then participate in the restructuring of the tubular basement membrane.[1]References
- Matrix metalloproteinases and TIMPS in cultured C57BL/6J-cpk kidney tubules. Rankin, C.A., Suzuki, K., Itoh, Y., Ziemer, D.M., Grantham, J.J., Calvet, J.P., Nagase, H. Kidney Int. (1996) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg