The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Analysis of Dishevelled signalling pathways during Xenopus development.

BACKGROUND: Recent studies have demonstrated that the Wnt, Frizzled and Notch proteins are involved in a variety of developmental processes in fly, worm, frog and mouse embryos. The Dishevelled (Dsh) protein is required for Drosophila cells to respond to Wingless, Notch and Frizzled signals, but the molecular mechanisms of its action are not well understood. Using the ability of a mutant form of the Xenopus homologue of Dsh (Xdsh) to block Wnt and Dsh signalling in a model system, this work attempts to clarify the role of the endogenous Xdsh during the early stages of vertebrate development. RESULTS: A mutant Xdsh (Xdd1) with an internal deletion of the conserved PDZ/DHR domain was constructed. Overexpression of Xdd1 mRNA in ventral blastomeres of Xenopus embryos strongly inhibited induction of secondary axes by the wild-type Xdsh and Xwnt8 mRNAs, but did not affect the axis-inducing ability of beta-catenin mRNA. These observations suggest that Xdd1 acts as a dominant-negative mutant. Dorsal expression of Xdd1 caused severe posterior truncations in the injected embryos, whereas wild-type Xdsh suppressed this phenotype. Xdd1 blocked convergent extension movements in ectodermal explants stimulated with mesoderm-inducing factors and in dorsal marginal zone explants, but did not affect mesoderm induction and differentiation. CONCLUSIONS: A vertebrate homologue of Dsh is a necessary component of Wnt signal transduction and functions upstream of beta-catenin. These findings also establish a requirement for the PDZ domain in signal transduction by Xdsh, and suggest that endogenous Xdsh controls morphogenetic movements in the embryo.[1]


WikiGenes - Universities