The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Cleavage of single- and double-stranded DNAs containing an abasic residue by Escherichia coli exonuclease III (AP endonuclease VI).

The Escherichia coli exonuclease III (AP endonuclease VI) is a DNA-repair enzyme that hydrolyzes the phosphodiester bond 5' to an abasic site in DNA. To study how the enzyme recognizes the abasic site, we used oligonucleotides containing a synthetic abasic site at any desired position in the sequence. We prepared oligonucleotides containing an abasic residue such as 2'-deoxyribosylformamide, 2'-deoxyribose, 1',2'-dideoxy ribofuranose or propanediol. Duplex oligonucleotides containing an abasic residue used in this study were cleaved on the 5' side of the abasic site by exonuclease III in spite of the varieties of the bases opposite and adjacent to the abasic site. In addition, we observed that the enzyme cleaved single-stranded oligonucleotides containing an abasic site on the 5' side of the abasic site. These findings suggest that the enzyme may principally recognize the DNA-pocket formed at an abasic site. The indole ring of the tryptophan 212 residue of the exonuclease III is probably intercalated to the abasic site. The tryptophan in the vicinity of the catalytic site is conserved in the type II AP endonuclease from various organisms.[1]

References

 
WikiGenes - Universities