The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Age-dependent increases in protein kinase C-alpha beta immunoreactivity and activity in the human brain: possible in vivo modulatory effects on guanine nucleotide regulatory G(i) proteins.

In the postmortem human brain (20 specimens of frontal cortex, Brodmann area 9) the abundance of immunoreactive protein kinase C (PKC-alpha beta) and the activity of PKC (calcium, phosphatidylserine, and phorbol ester-dependent enzymes) were determined to study the effect of aging (range 1 month to 89 years) on this regulatory enzyme. Also, the abundance of immunoreactive G protein subunits (G alpha i1/2, G alpha i3, G alpha o, G alpha s and G beta) were assessed in parallel to investigate possible relationships with PKC-alpha beta. The abundance of PKC-alpha beta was positively correlated with aging (r = 0.62, n = 20, P < 0.005). Moreover, PKC activity also showed a significant positive correlation with the age of the subject at death (r = 0.55, n = 14, P < 0.05). Because of the known in vitro modulatory role of PKC-alpha beta on G(i) proteins, the existence of an in vivo effect of brain PKC-alpha beta on various G proteins was assessed through correlation analyses. In the brain of the same subjects, there were significant negative correlations between the immunoreactivity of PKC-alpha beta and the immunoreactivities of G alpha i1/2 (r = -0.78, n = 13, P < 0.005) and G alpha i3 (r = -0.58, n = 15, P < 0.005). In the same brains, similar negative, although non-significant, correlations were found between the levels of PKC-alpha beta and those of G alpha o, G alpha s and G beta. The results demonstrate an up-regulation of brain PKC-alpha beta with aging and suggest the existence of a relevant in vivo modulatory role of this regulatory enzyme on inhibitory Gi proteins in the human brain during the process of aging.[1]

References

 
WikiGenes - Universities