Passage of silver ions through membrane-mimetic materials, and its relevance to treatment of burn wounds with silver sulfadiazine cream.
Treatment of acute burn wounds with silver sulfadiazine has raised concern of potential silver toxicity. As the wound heals, a barrier forms between the silver sulfadiazine and the blood, but this membrane is not impenetrable, and so silver absorption is still possible. In this work, we have modeled chemical systems to investigate the transport of silver sulfadiazine and silver chloride through cellulose, chitosan, collagen, and polyethylene membranes into the following media: synthetic serum electrolyte solution (SSES), SSES plus glutathione, and human serum, to simulate some of the chemical processes occurring at a burn wound during healing. Our results clearly indicate that membranes can retard the movement of silver ions, especially those that have silver-binding properties. This suggests that silver absorption at a healing wound will be minimized by entrapment of silver in the growing membrane network, and thus the likelihood of silver toxicity will be reduced.[1]References
- Passage of silver ions through membrane-mimetic materials, and its relevance to treatment of burn wounds with silver sulfadiazine cream. Tsipouras, N., Rix, C.J., Brady, P.H. Clin. Chem. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg