The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Evidence that FGF8 signalling from the midbrain-hindbrain junction regulates growth and polarity in the developing midbrain.

The developing vertebrate mesencephalon shows a rostrocaudal gradient in the expression of a number of molecular markers and in the cytoarchitectonic differentiation of the tectum, where cells cease proliferating and differentiate in a rostral to caudal progression. Tissue grafting experiments have implicated cell signalling by the mesencephalic-metencephalic (mid-hindbrain) junction (or isthmus) in orchestrating these events. We have explored the role of Wnt-1 and FGF8 signalling in the regulation of mesencephalic polarity. Wnt-1 is expressed in the caudal mesencephalon and Fgf8 in the most rostral metencephalon. Wnt-1 regulates Fgf8 expression in the adjacent metencephalon, most likely via a secondary mesencephalic signal. Ectopic expression of Fgf8 in the mesencephalon is sufficient to activate expression of Engrailed-2 (En-2) and ELF-1, two genes normally expressed in a decreasing caudal to rostral gradient in the posterior mesencephalon. Ectopic expression of Engrailed-1 (En-1), a functionally equivalent homologue of En-2 is sufficient to activate ELF-1 expression by itself. These results indicate the existence of a molecular hierarchy in which FGF8 signalling establishes the graded expression of En-2 within the tectum. This in turn may act to specify other aspects of A-P polarity such as graded ELF-1 expression. Our studies also reveal that FGF8 is a potent mitogen within the mesencephalon: when ectopically expressed, neural precursors continue to proliferate and neurogenesis is prevented. Taken together our results suggest that FGF8 signalling from the isthmus has a key role in coordinately regulating growth and polarity in the developing mesencephalon.[1]

References

 
WikiGenes - Universities