The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Nucleotide occupancy of F1-ATPase catalytic sites under crystallization conditions.

Using site-directed tryptophan fluorescence we studied nucleotide occupancy of the catalytic sites of Escherichia coli F1-ATPase, under conditions used previously for crystallization and X-ray structure analysis of the bovine mitochondrial enzyme [Abrahams et al. (1994) Nature 370, 621-628]. We found that only two of the three catalytic sites were filled in the E. coli enzyme under these conditions (250 microM MgAMPPNP plus 5 microM MgADP), consistent with what was reported in the bovine F1 X-ray structure. However, subsequent addition of a physiological concentration of MgATP readily filled the third catalytic site. Therefore the enzyme form seen in the X-ray structure results from the fact that it is obtained under sub-saturating nucleotide conditions. The data show that the X-ray structure is compatible with a catalytic mechanism in which all three F1-ATPase catalytic sites must fill with MgATP to initiate steady-state hydrolysis [e.g. Weber and Senior (1996) Biochim. Biophys. Acta 1275, 101-104]. The data further demonstrate that the site-directed tryptophan fluorescence technique can provide valuable support for F1 crystallography studies.[1]

References

  1. Nucleotide occupancy of F1-ATPase catalytic sites under crystallization conditions. Löbau, S., Weber, J., Senior, A.E. FEBS Lett. (1997) [Pubmed]
 
WikiGenes - Universities