The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Molecular characterization of pldA, the structural gene for a phospholipase A from Campylobacter coli, and its contribution to cell-associated hemolysis.

A gene (pldA) encoding a 35.0-kDa protein with significant homology to the Escherichia coli outer membrane phospholipase was identified upstream of an operon encoding an enterochelin transport system in Campylobacter coli. The results of this study suggest that this gene encodes an outer membrane phospholipase A in C. coli. First, expression of the pldA gene product in a PldA-deficient mutant of E. coli led to the restoration of phospholipase A activity. The recombinant product also partitioned to the outer membrane, suggesting that it may be similarly located in C. coli. Second, heterologous overexpression in E. coli, followed by in vitro folding and purification of C. coli PldA, resulted in pure protein which displayed calcium-dependent lysophospholipase and phospholipase A activities in vitro. Finally, mutants of C. coli in which the pldA gene had been inactivated by allelic exchange were deficient in phospholipase A activity. Phospholipases are associated with lysis of erythrocytes by a number of bacterial pathogens. The pldA mutant was shown to have a reduced hemolytic activity compared to the wild-type strain, suggesting a role for the phospholipase A in the lysis of erythrocytes by C. coli. Since hemolysins are intimately associated with the disease-causing potential of a number of bacterial pathogens, it is likely that the phospholipase A plays some role in Campylobacter virulence.[1]

References

 
WikiGenes - Universities