The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The soluble methane monooxygenase gene cluster of the trichloroethylene-degrading methanotroph Methylocystis sp. strain M.

In methanotrophic bacteria, methane is oxidized to methanol by the enzyme methane monooxygenase (MMO). The soluble MMO enzyme complex from Methylocystis sp. strain M also oxidizes a wide range of aliphatic and aromatic compounds, including trichloroethylene. In this study, heterologous DNA probes from the type II methanotroph Methylosinus trichosporium OB3b were used to isolate souble MMO (sMMO) genes from the type II methanotroph Methylocystis sp. strain M. sMMO genes from strain M are clustered on the chromosome and show a high degree of identity with the corresponding genes from Methylosinus trichosporium OB3b. Sequencing and phylogenetic analysis of the 16S rRNA gene from Methylocystis sp. strain M have confirmed that it is most closely related to the type II methanotroph Methylocystis parvus OBBP, which, unlike Methylocystis sp. strain M, does not possess an sMMO. A similar phylogenetic analysis using the pmoA gene, which encodes the 27-kDa polypeptide of the particulate MMO, also places Methylocystis sp. strain M firmly in the genus Methylocystis. This is the first report of isolation and characterization of methane oxidation genes from methanotrophs of the genus Methylocystis.[1]

References

  1. The soluble methane monooxygenase gene cluster of the trichloroethylene-degrading methanotroph Methylocystis sp. strain M. McDonald, I.R., Uchiyama, H., Kambe, S., Yagi, O., Murrell, J.C. Appl. Environ. Microbiol. (1997) [Pubmed]
 
WikiGenes - Universities