The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin.

A human liver carboxylesterase (hCE-2) that catalyzes the hydrolysis of the benzoyl group of cocaine and the acetyl groups of 4-methylumbelliferyl acetate, heroin, and 6-monoacetylmorphine was purified from human liver. The purified enzyme exhibited a single band on SDS-polyacrylamide gel electrophoresis with a subunit mass of approximately 60 kDa. The native enzyme was monomeric. The isoelectric point of hCE-2 was approximately 4. 9. Treatment with endoglycosidase H caused an increase in electrophoretic mobility indicating that the liver carboxylesterase was a glycoprotein of the high mannose type. The complete cDNA nucleotide sequence was determined. The authenticity of the cDNA was confirmed by a perfect sequence match of 78 amino acids derived from the hCE-2 purified from human liver. The mature 533-amino acid enzyme encoded by this cDNA shared highest sequence identity with the rabbit liver carboxylesterase form 2 (73%) and the hamster liver carboxylesterase AT51p (67%). Carboxylesterases with high sequence identity to hCE-2 have not been reported in mouse and rat liver. hCE-2 exhibited different drug ester substrate specificity from the human liver carboxylesterase called hCE-1, which hydrolyzes the methyl ester of cocaine. hCE-2 had higher catalytic efficiencies for hydrolysis of 4-methylumbelliferyl acetate, heroin, and 6-monoacetylmorphine and greater inhibition by eserine than hCE-1. hCE-2 may play an important role in the degradation of cocaine and heroin in human tissues.[1]

References

  1. Purification and cloning of a broad substrate specificity human liver carboxylesterase that catalyzes the hydrolysis of cocaine and heroin. Pindel, E.V., Kedishvili, N.Y., Abraham, T.L., Brzezinski, M.R., Zhang, J., Dean, R.A., Bosron, W.F. J. Biol. Chem. (1997) [Pubmed]
 
WikiGenes - Universities