The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Vitamin A regulates genes involved in hepatic gluconeogenesis in mice: phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase.

We examined the effects of vitamin A deficiency and all-trans retinoic acid (RA) supplementation on regulation of three important genes in hepatic gluconeogenesis: the genes for phosphoenolpyruvate carboxykinase (PEPCK), fructose-1,6-bisphosphatase (Fru-1,6-P2ase) and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6-PF-2-K/Fru-2,6-P2ase). Mice were made vitamin A deficient in the second generation by initiating a vitamin A-deficient diet on d 10 of gestation. At 7 wk of age, vitamin A-deficient mice were treated with all-trans RA or vehicle alone and killed for RNA analysis. In liver, vitamin A deficiency resulted in PEPCK mRNA levels that were 74% lower and 6-PF-2-K/Fru-2,6-P2ase mRNA levels that were 42% lower than the respective mRNA measured in control mice. The Fru-1,6-P2ase mRNA abundance was not affected by vitamin A deficiency. The decrease in hepatic PEPCK and 6-PF-2-K/Fru-2,6-P2ase mRNA levels was reversed by treatment with all-trans RA within 3 h of administration. In mice fed the control diet, food deprivation for 15 h resulted in PEPCK mRNA levels that were 3.5-fold higher, Fru-1,6-P2ase mRNA levels that were 2-fold higher, and 6-PF-2-K/Fru-2,6-P2ase mRNA levels that were 3.4-fold higher than in fed mice. Vitamin A-deficient mice did not respond to food deprivation with induced PEPCK mRNA levels, whereas 6-PF-2-K/Fru-2,6-P2ase and Fru-1,6-P2ase mRNA levels were induced. The pattern of 6-PF-2-K/Fru-2,6-P2ase mRNA abundance with vitamin A deficiency and food deprivation was complex and different from that for either PEPCK or Fru-1,6-P2ase transcripts. The cAMP-responsiveness of the PEPCK gene in vitamin A-deficient mice was tested. Vitamin A deficiency caused a significant reduction in cAMP stimulation of PEPCK mRNA levels in liver. These results in the whole animal indicate that vitamin A regulation of the hepatic PEPCK gene is physiologically important; without adequate vitamin A nutriture, stimulation of the PEPCK gene by food deprivation or cAMP treatment is inhibited in the liver.[1]

References

 
WikiGenes - Universities