The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1).

Two forms of DNA base excision-repair (BER) have been observed: a 'short-patch' BER pathway involving replacement of one nucleotide and a 'long-patch' BER pathway with gap-filling of several nucleotides. The latter mode of repair has been investigated using human cell-free extracts or purified proteins. Correction of a regular abasic site in DNA mainly involves incorporation of a single nucleotide, whereas repair patches of two to six nucleotides in length were found after repair of a reduced or oxidized abasic site. Human AP endonuclease, DNA polymerase beta and a DNA ligase (either III or I) were sufficient for the repair of a regular AP site. In contrast, the structure-specific nuclease DNase IV (FEN1) was essential for repair of a reduced AP site, which occurred through the long-patch BER pathway. DNase IV was required for cleavage of a reaction intermediate generated by template strand displacement during gap-filling. XPG, a related nuclease, could not substitute for DNase IV. The long-patch BER pathway was largely dependent on DNA polymerase beta in cell extracts, but the reaction could be reconstituted with either DNA polymerase beta or delta. Efficient repair of gamma-ray-induced oxidized AP sites in plasmid DNA also required DNase IV. PCNA could promote the Pol beta-dependent long-patch pathway by stimulation of DNase IV.[1]

References

 
WikiGenes - Universities