The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Agonist and inverse agonist efficacy at human recombinant serotonin 5-HT1A receptors as a function of receptor:G-protein stoichiometry.

Membrane preparations were made from Chinese Hamster Ovary (CHO) cells expressing 1.6 and 4.2 pmol/mg of recombinant human 5-HT1A receptors, as determined by saturation binding with the selective antagonist, [3H]-S 15535 ([3H]-4-(benzodioxan-5-yl)]-(indan-2-yl)piperazine). There was no change in the number of G-proteins activated by the full agonist, serotonin (5-HT; approximately 1.1 pmol/mg in each preparation, measured by [35S]-GTP gamma S saturation binding), therefore increasing the receptor:G-protein ratio from approximately 1.4:1 (RGlow) to approximately 4:1 (RGhigh). Agonist efficacy was measured by stimulation of [35S]-GTP gamma S binding. The serotonergic agonist, eltoprazine, behaved as a partial agonist (Emax = 52.7%) at RGlow membranes but virtually as a full agonist (Emax = 93.2%) at RGhigh membranes, relative to 5-HT (= 100%). The latter exhibited a two-fold shift to the left in its concentration-response curve in RGhigh compared to RGlow membranes (P < 0.01). WAY 100,635 (N-¿2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl¿-N-(2-pyridinyl) -cyclo-hexane-carboxamide), did not alter [35S]-GTP gamma S binding from basal levels in either membrane preparation. In contrast, spiperone displayed inverse agonist activity, decreasing [35S]-GTP gamma S binding from basal levels by 17% in RGlow membranes but by 28% in RGhigh membranes. These data indicate that an increased receptor:G-protein ratio (i) augments the potency of full agonists, (ii) increases the efficacy of partial agonists and (iii) increases the negative efficacy of inverse agonists at recombinant human 5-HT1A receptors. Furthermore, these data suggest that spiperone induces, or stabilises, a G-protein-coupled, but inactive conformation of the receptor.[1]

References

  1. Agonist and inverse agonist efficacy at human recombinant serotonin 5-HT1A receptors as a function of receptor:G-protein stoichiometry. Newman-Tancredi, A., Conte, C., Chaput, C., Verrièle, L., Millan, M.J. Neuropharmacology (1997) [Pubmed]
 
WikiGenes - Universities