The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

spiperone     8-[4-(4-fluorophenyl)-4-oxo- butyl]-1...

Synonyms: Espiperona, Spiperonum, Spiropitan, Spiroperone, Spiroperidol, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of spiperone

 

Psychiatry related information on spiperone

  • Alzheimer's disease: monoamines and spiperone binding reduced in nucleus basalis [6].
  • Additionally, the effects of chronic spiroperidol on self-stimulation of this structure may model the therapeutic effects of neuroleptics in humans [7].
  • Locomotor activity scores were significantly reduced by SCH23390, but not by spiperone [8].
  • The data was incorporated into a control system model which depicts actions of spiperone in the food-preference situation with total eating duration as the final behavioural output [9].
  • Dose-related influences of quinpirole on (a) the average latency to initiate a detection response (i.e., the S + response latency), (b) the total session duration, and (c) the number of aborted trials were also eliminated or greatly attenuated by prior spiperone injection [10].
 

High impact information on spiperone

 

Chemical compound and disease context of spiperone

 

Biological context of spiperone

 

Anatomical context of spiperone

  • The photosensitive spiperone analogue N-(p-azido-m-[125I]iodophenethyl)spiperone labeled similar sized proteins of Mr = 120,000 in membranes prepared from the kidney inner medulla, striatum, and pituitary [24].
  • In choroid plexus, however, the rank order (mianserin greater than ketanserin much greater than spiperone) and absolute potencies were consistent with binding to the 5-HT1C site [25].
  • Spiperone: evidence for uptake into secretory granules [26].
  • Spiperone at 1 microM inhibited by over 50% serotonin transport into membrane vesicles isolated from platelet dense granules; this concentration inhibited the Na+-dependent plasma membrane transport system less than 10% [26].
  • Serotonin treatment of rat uterine myometrial smooth muscle cells induced inositol phosphate (IP) turnover, which was abolished by the 5-HT(2A) receptor-specific antagonists ketanserin and spiperone [27].
 

Associations of spiperone with other chemical compounds

 

Gene context of spiperone

 

Analytical, diagnostic and therapeutic context of spiperone

References

  1. Chronic treatment with dopamine receptor antagonists: behavioral and pharmacologic effects on D1 and D2 dopamine receptors. Hess, E.J., Norman, A.B., Creese, I. J. Neurosci. (1988) [Pubmed]
  2. The human 5-HT1A receptor expressed in HeLa cells stimulates sodium-dependent phosphate uptake via protein kinase C. Raymond, J.R., Fargin, A., Middleton, J.P., Graff, J.M., Haupt, D.M., Caron, M.G., Lefkowitz, R.J., Dennis, V.W. J. Biol. Chem. (1989) [Pubmed]
  3. Choreic movements in the macaque monkey induced by kainic acid lesions of the striatum combined with L-dopa. Pharmacological, biochemical and physiological studies on neural mechanisms. Kanazawa, I., Kimura, M., Murata, M., Tanaka, Y., Cho, F. Brain (1990) [Pubmed]
  4. Resistance to bromocriptine in prolactinomas. Pellegrini, I., Rasolonjanahary, R., Gunz, G., Bertrand, P., Delivet, S., Jedynak, C.P., Kordon, C., Peillon, F., Jaquet, P., Enjalbert, A. J. Clin. Endocrinol. Metab. (1989) [Pubmed]
  5. Dopamine D2 receptor gene expression and binding sites in adrenal medulla and pheochromocytoma. Pupilli, C., Lanzillotti, R., Fiorelli, G., Selli, C., Gomez, R.A., Carey, R.M., Serio, M., Mannelli, M. J. Clin. Endocrinol. Metab. (1994) [Pubmed]
  6. Alzheimer's disease: monoamines and spiperone binding reduced in nucleus basalis. Sparks, D.L., Markesbery, W.R., Slevin, J.T. Ann. Neurol. (1986) [Pubmed]
  7. Facilitation of self-stimulation of the prefrontal cortex in rats following chronic administration of spiroperidol or amphetamine. Robertson, A., Mogenson, G.J. Psychopharmacology (Berl.) (1979) [Pubmed]
  8. Selective dopamine antagonists reduce nicotine self-administration. Corrigall, W.A., Coen, K.M. Psychopharmacology (Berl.) (1991) [Pubmed]
  9. Effects of spiperone on feeding performance in a food preference test. Cooper, S.J., Sweeney, K.F., Toates, F.M. Psychopharmacology (Berl.) (1979) [Pubmed]
  10. Influence of the D-2 dopamine receptor agonist quinpirole on the odor detection performance of rats before and after spiperone administration. Doty, R.L., Risser, J.M. Psychopharmacology (Berl.) (1989) [Pubmed]
  11. Brain dopamine and serotonin receptor sites revealed by digital subtraction autoradiography. Altar, C.A., O'Neil, S., Walter, R.J., Marshall, J.F. Science (1985) [Pubmed]
  12. Normalization of spiroperidol binding in the denervated rat striatum by homologous grafts of substantia nigra. Freed, W.J., Ko, G.N., Niehoff, D.L., Kuhar, M.J., Hoffer, B.J., Olson, L., Cannon-Spoor, H.E., Morihisa, J.M., Wyatt, R.J. Science (1983) [Pubmed]
  13. Structure and functional expression of cloned rat serotonin 5HT-2 receptor. Pritchett, D.B., Bach, A.W., Wozny, M., Taleb, O., Dal Toso, R., Shih, J.C., Seeburg, P.H. EMBO J. (1988) [Pubmed]
  14. Increased brain dopamine and dopamine receptors in schizophrenia. Mackay, A.V., Iversen, L.L., Rossor, M., Spokes, E., Bird, E., Arregui, A., Creese, I., Synder, S.H. Arch. Gen. Psychiatry (1982) [Pubmed]
  15. Effector coupling mechanisms of the cloned 5-HT1A receptor. Fargin, A., Raymond, J.R., Regan, J.W., Cotecchia, S., Lefkowitz, R.J., Caron, M.G. J. Biol. Chem. (1989) [Pubmed]
  16. Inhibition of cutaneous contact hypersensitivity in the mouse with systemic or topical spiperone: topical application of spiperone produces local immunosuppression without inducing systemic neuroleptic effects. Sharpe, R.J., Chandrasekar, A., Arndt, K.A., Wang, Z.S., Galli, S.J. J. Invest. Dermatol. (1992) [Pubmed]
  17. Cyclic AMP-dependent induction of serotonin N-acetyltransferase activity in photoreceptor-enriched chick retinal cell cultures: characterization and inhibition by dopamine. Iuvone, P.M., Avendano, G., Butler, B.J., Adler, R. J. Neurochem. (1990) [Pubmed]
  18. Evidence that m-chlorophenylpiperazine-induced hyperthermia in rats is mediated by stimulation of 5-HT2C receptors. Mazzola-Pomietto, P., Aulakh, C.S., Wozniak, K.M., Murphy, D.L. Psychopharmacology (Berl.) (1996) [Pubmed]
  19. Selective labeling of serotonin receptors by d-[3H]lysergic acid diethylamide in calf caudate. Whitaker, P.M., Seeman, P. Proc. Natl. Acad. Sci. U.S.A. (1978) [Pubmed]
  20. Direct effect of estradiol on the number of dopamine receptors in the anterior pituitary of ovariectomized rats. Pasqualini, C., Bojda, F., Kerdelhué, B. Endocrinology (1986) [Pubmed]
  21. 5-Hydroxytryptamine responses in neonate rat motoneurones in vitro. Wang, M.Y., Dun, N.J. J. Physiol. (Lond.) (1990) [Pubmed]
  22. Dopamine receptor activation in bovine pinealocyte via a cAMP-dependent transcription pathway. Santanavanich, C., Ebadi, M., Govitrapong, P. J. Pineal Res. (2005) [Pubmed]
  23. Effects of dopaminergic agents on alcohol consumption by rats in a limited access paradigm. Linseman, M.A. Psychopharmacology (Berl.) (1990) [Pubmed]
  24. Characterization of a dopamine receptor (DA2K) in the kidney inner medulla. Huo, T., Ye, M.Q., Healy, D.P. Proc. Natl. Acad. Sci. U.S.A. (1991) [Pubmed]
  25. A unique serotonin receptor in choroid plexus is linked to phosphatidylinositol turnover. Conn, P.J., Sanders-Bush, E., Hoffman, B.J., Hartig, P.R. Proc. Natl. Acad. Sci. U.S.A. (1986) [Pubmed]
  26. Spiperone: evidence for uptake into secretory granules. Dannies, P.S., Rudnick, M.S., Fishkes, H., Rudnick, G. Proc. Natl. Acad. Sci. U.S.A. (1984) [Pubmed]
  27. Serotonin-induced MMP-13 production is mediated via phospholipase C, protein kinase C, and ERK1/2 in rat uterine smooth muscle cells. Shum, J.K., Melendez, J.A., Jeffrey, J.J. J. Biol. Chem. (2002) [Pubmed]
  28. Urinary and brain beta-carboline-3-carboxylates as potent inhibitors of brain benzodiazepine receptors. Braestrup, C., Nielsen, M., Olsen, C.E. Proc. Natl. Acad. Sci. U.S.A. (1980) [Pubmed]
  29. Important role of serotonin in the antitumor effects of recombinant human tumor necrosis factor-alpha in mice. Manda, T., Nishigaki, F., Mori, J., Shimomura, K. Cancer Res. (1988) [Pubmed]
  30. Reduced D2 dopamine and muscarinic cholinergic receptor densities in caudate specimens from fluctuating parkinsonian patients. Ahlskog, J.E., Richelson, E., Nelson, A., Kelly, P.J., Okazaki, H., Tyce, G.M., van Heerden, J.A., Stoddard, S.L., Carmichael, S.W. Ann. Neurol. (1991) [Pubmed]
  31. Identification of receptor domains that modify ligand binding to 5-hydroxytryptamine2 and 5-hydroxytryptamine1c serotonin receptors. Choudhary, M.S., Craigo, S., Roth, B.L. Mol. Pharmacol. (1992) [Pubmed]
  32. Presynaptic inhibition of dopamine synthesis in rat striatal tissue by enantiomeric mono- and dihydroxyaporphines. Booth, R.G., Baldessarini, R.J., Kula, N.S., Gao, Y., Zong, R., Neumeyer, J.L. Mol. Pharmacol. (1990) [Pubmed]
  33. Molecular cloning, functional expression, and mRNA tissue distribution of the human 5-hydroxytryptamine2B receptor. Kursar, J.D., Nelson, D.L., Wainscott, D.B., Baez, M. Mol. Pharmacol. (1994) [Pubmed]
  34. Evidence that 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI)-induced hyperthermia in rats is mediated by stimulation of 5-HT2A receptors. Mazzola-Pomietto, P., Aulakh, C.S., Wozniak, K.M., Hill, J.L., Murphy, D.L. Psychopharmacology (Berl.) (1995) [Pubmed]
  35. Neuropeptide Y potentiates the N-methyl-D-aspartate response in the CA3 dorsal hippocampus. II. Involvement of a subtype of sigma receptor. Monnet, F.P., Debonnel, G., Fournier, A., de Montigny, C. J. Pharmacol. Exp. Ther. (1992) [Pubmed]
  36. 5-HT1 receptor agonists attenuate the naloxone-induced jumping behaviour in morphine-dependent mice. Berthold, H., Fozard, J.R., Engel, G. Eur. J. Pharmacol. (1989) [Pubmed]
  37. Protein kinase C translocation in human blood platelets. Wang, H.Y., Friedman, E. Life Sci. (1990) [Pubmed]
  38. A quantitative model for the in vivo assessment of drug binding sites with positron emission tomography. Mintun, M.A., Raichle, M.E., Kilbourn, M.R., Wooten, G.F., Welch, M.J. Ann. Neurol. (1984) [Pubmed]
  39. Auditory evoked potentials reflect serotonergic neuronal activity--a study in behaving cats administered drugs acting on 5-HT1A autoreceptors in the dorsal raphe nucleus. Juckel, G., Hegerl, U., Molnár, M., Csépe, V., Karmos, G. Neuropsychopharmacology (1999) [Pubmed]
  40. Soluble spiroperidol binding factors from bovine caudate nucleus. Winkler, M.H., Berl, S. J. Neurochem. (1982) [Pubmed]
  41. Effects of spiperone on self-stimulation and other activities of the Mongolian gerbil. Francis, N., Marley, E., Stephenson, J.D. Br. J. Pharmacol. (1978) [Pubmed]
 
WikiGenes - Universities