The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

A role for TGFbeta1 in langerhans cell biology. Further characterization of the epidermal Langerhans cell defect in TGFbeta1 null mice.

Previous studies of TGFbeta1 null (-/-) mice indicated that the epidermis was devoid of Langerhans cells (LC) and that the LC deficiency was not secondary to the inflammation that is the dominant feature of the -/- phenotype (Borkowski, T.A., J.J. Letterio, A.G. Farr, and M.C. Udey. 1996. J. Exp. Med. 184:2417-2422). Herein, we demonstrate that dendritic cells could be expanded from the bone marrow of -/- mice and littermate controls. Bone marrow from -/- mice also gave rise to LC after transfer into lethally irradiated recipients. Thus, the LC defect in TGFbeta1 null mice does not result from an absolute deficiency in bone marrow precursors, and paracrine TGFbeta1 production is sufficient for LC development. Several approaches were used to assess the suitability of -/- skin for LC localization. A survey revealed that although a number of cytokine mRNAs were expressed de novo, mRNAs encoding proinflammatory cytokines known to mobilize LC from epidermis (IL-1 and TNFalpha) were not strikingly overrepresented in -/- skin. In addition, bone marrow-derived LC populated full-thickness TGFbeta1 null skin after engraftment onto BALB/c nu/nu recipients. Finally, the skin of transgenic mice expressing a truncated loricrin promoter-driven dominant-negative TGFbeta type II receptor contained normal numbers of LC. Because TGFbeta1 signaling in these mice is disrupted only in keratinocytes and the keratinocyte hyperproliferative component of the TGFbeta1 -/- phenotype is reproduced, these results strongly suggest that the LC defect in TGFbeta1 null mice is not due to an epidermal abnormality but reflects a requirement of murine LC (or their precursors) for TGFbeta1.[1]


  1. A role for TGFbeta1 in langerhans cell biology. Further characterization of the epidermal Langerhans cell defect in TGFbeta1 null mice. Borkowski, T.A., Letterio, J.J., Mackall, C.L., Saitoh, A., Wang, X.J., Roop, D.R., Gress, R.E., Udey, M.C. J. Clin. Invest. (1997) [Pubmed]
WikiGenes - Universities