The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review

Langerhans Cells

Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Langerhans Cells


High impact information on Langerhans Cells


Chemical compound and disease context of Langerhans Cells


Biological context of Langerhans Cells


Anatomical context of Langerhans Cells


Associations of Langerhans Cells with chemical compounds


Gene context of Langerhans Cells

  • Our model assigns unprecedented roles to CXCL14 and epidermal tissue as attractant and niche of differentiation, respectively, in the renewal of Langerhans cells under steady-state conditions [27].
  • Gfi1-/- mice showed a global reduction of myeloid and lymphoid DCs in all lymphoid organs whereas epidermal Langerhans cells were enhanced in number [28].
  • R5 HIV productively infects Langerhans cells, and infection levels are regulated by compound CCR5 polymorphisms [29].
  • Compared with normal vulval skin, VIN lesions showed increased infiltration by CD4 (T-helper) and CD68 (macrophages) but not CD1a (Langerhans cells) or CD8 (CTLs) [30].
  • We first show that MV-infected Langerhans cells or monocyte-derived DCs undergo a maturation process similarly to the one induced by TNF-alpha or LPS, respectively [31].

Analytical, diagnostic and therapeutic context of Langerhans Cells


  1. Expression and function of CCR5 and CXCR4 on human Langerhans cells and macrophages: implications for HIV primary infection. Zaitseva, M., Blauvelt, A., Lee, S., Lapham, C.K., Klaus-Kovtun, V., Mostowski, H., Manischewitz, J., Golding, H. Nat. Med. (1997) [Pubmed]
  2. Induction of hapten-specific tolerance by interleukin 10 in vivo. Enk, A.H., Saloga, J., Becker, D., B1P6madzadeh, M., Knop, J. J. Exp. Med. (1994) [Pubmed]
  3. Coincident expression of the chemokine receptors CCR6 and CCR7 by pathologic Langerhans cells in Langerhans cell histiocytosis. Fleming, M.D., Pinkus, J.L., Fournier, M.V., Alexander, S.W., Tam, C., Loda, M., Sallan, S.E., Nichols, K.E., Carpentieri, D.F., Pinkus, G.S., Rollins, B.J. Blood (2003) [Pubmed]
  4. Tumor cell surface expression of granulocyte-macrophage colony-stimulating factor elicits antitumor immunity and protects from tumor challenge in the P815 mouse mastocytoma tumor model. Soo Hoo, W., Lundeen, K.A., Kohrumel, J.R., Pham, N.L., Brostoff, S.W., Bartholomew, R.M., Carlo, D.J. J. Immunol. (1999) [Pubmed]
  5. Tissue localization of transforming growth factor-beta1 in pulmonary eosinophilic granuloma. Asakura, S., Colby, T.V., Limper, A.H. Am. J. Respir. Crit. Care Med. (1996) [Pubmed]
  6. Depletion of host Langerhans cells before transplantation of donor alloreactive T cells prevents skin graft-versus-host disease. Merad, M., Hoffmann, P., Ranheim, E., Slaymaker, S., Manz, M.G., Lira, S.A., Charo, I., Cook, D.N., Weissman, I.L., Strober, S., Engleman, E.G. Nat. Med. (2004) [Pubmed]
  7. Prostaglandin E2-EP4 signaling initiates skin immune responses by promoting migration and maturation of Langerhans cells. Kabashima, K., Sakata, D., Nagamachi, M., Miyachi, Y., Inaba, K., Narumiya, S. Nat. Med. (2003) [Pubmed]
  8. GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Caux, C., Dezutter-Dambuyant, C., Schmitt, D., Banchereau, J. Nature (1992) [Pubmed]
  9. Phosphatidylserine enhances the ability of epidermal Langerhans cells to induce contact hypersensitivity. Girolomoni, G., Pastore, S., Zacchi, V., Cavani, A., Marconi, A., Giannetti, A. J. Immunol. (1993) [Pubmed]
  10. Susceptibility to effects of UVB radiation on induction of contact hypersensitivity as a risk factor for skin cancer in humans. Yoshikawa, T., Rae, V., Bruins-Slot, W., Van den Berg, J.W., Taylor, J.R., Streilein, J.W. J. Invest. Dermatol. (1990) [Pubmed]
  11. IgE-positive Langerhans cells and Th2 allergen-specific T cells in atopic dermatitis. Mudde, G.C., van Reijsen, F.C., Bruijnzeel-Koomen, C.A. J. Invest. Dermatol. (1992) [Pubmed]
  12. Langerhans cells in skin from patients with psoriasis: quantitative and qualitative study of T6 and HLA-DR antigen-expressing cells and changes with aromatic retinoid administration. Haftek, M., Faure, M., Schmitt, D., Thivolet, J. J. Invest. Dermatol. (1983) [Pubmed]
  13. Establishment of a cell line retaining Langerhans cell characteristics. Berman, B., France, D.S. J. Invest. Dermatol. (1980) [Pubmed]
  14. Antigen processing by epidermal Langerhans cells correlates with the level of biosynthesis of major histocompatibility complex class II molecules and expression of invariant chain. Puré, E., Inaba, K., Crowley, M.T., Tardelli, L., Witmer-Pack, M.D., Ruberti, G., Fathman, G., Steinman, R.M. J. Exp. Med. (1990) [Pubmed]
  15. Depletion of epidermal langerhans cells and Ia immunogenicity from tape-stripped mouse skin. Streilein, J.W., Lonsberry, L.W., Bergstresser, P.R. J. Exp. Med. (1982) [Pubmed]
  16. IFN-gamma enables cross-presentation of exogenous protein antigen in human Langerhans cells by potentiating maturation. Matsuo, M., Nagata, Y., Sato, E., Atanackovic, D., Valmori, D., Chen, Y.T., Ritter, G., Mellman, I., Old, L.J., Gnjatic, S. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  17. Corticosteroids prevent generation of CD34+-derived dermal dendritic cells but do not inhibit Langerhans cell development. Woltman, A.M., Massacrier, C., de Fijter, J.W., Caux, C., van Kooten, C. J. Immunol. (2002) [Pubmed]
  18. Type I IFNs enhance the terminal differentiation of dendritic cells. Luft, T., Pang, K.C., Thomas, E., Hertzog, P., Hart, D.N., Trapani, J., Cebon, J. J. Immunol. (1998) [Pubmed]
  19. Epidermal Langerhans cells are derived from cells originating in bone marrow. Katz, S.I., Tamaki, K., Sachs, D.H. Nature (1979) [Pubmed]
  20. The route of antigen entry determines the requirement for L-selectin during immune responses. Catalina, M.D., Carroll, M.C., Arizpe, H., Takashima, A., Estess, P., Siegelman, M.H. J. Exp. Med. (1996) [Pubmed]
  21. Human dendritic cells skew isotype switching of CD40-activated naive B cells towards IgA1 and IgA2. Fayette, J., Dubois, B., Vandenabeele, S., Bridon, J.M., Vanbervliet, B., Durand, I., Banchereau, J., Caux, C., Brière, F. J. Exp. Med. (1997) [Pubmed]
  22. Tumor necrosis factor alpha maintains the viability of murine epidermal Langerhans cells in culture, but in contrast to granulocyte/macrophage colony-stimulating factor, without inducing their functional maturation. Koch, F., Heufler, C., Kämpgen, E., Schneeweiss, D., Böck, G., Schuler, G. J. Exp. Med. (1990) [Pubmed]
  23. Epidermal Langerhans cells bear Fc and C3 receptors. Stingl, G., Wolff-Schreiner, E.C., Pichler, W.J., Gschnait, F., Knapp, W., Wolff, K. Nature (1977) [Pubmed]
  24. Langerin, a novel C-type lectin specific to Langerhans cells, is an endocytic receptor that induces the formation of Birbeck granules. Valladeau, J., Ravel, O., Dezutter-Dambuyant, C., Moore, K., Kleijmeer, M., Liu, Y., Duvert-Frances, V., Vincent, C., Schmitt, D., Davoust, J., Caux, C., Lebecque, S., Saeland, S. Immunity (2000) [Pubmed]
  25. Immunologic properties of purified epidermal Langerhans cells. Distinct requirements for stimulation of unprimed and sensitized T lymphocytes. Inaba, K., Schuler, G., Witmer, M.D., Valinksy, J., Atassi, B., Steinman, R.M. J. Exp. Med. (1986) [Pubmed]
  26. Role of IgE in atopic dermatitis. Leung, D.Y. Curr. Opin. Immunol. (1993) [Pubmed]
  27. Cutaneous CXCL14 targets blood precursors to epidermal niches for Langerhans cell differentiation. Schaerli, P., Willimann, K., Ebert, L.M., Walz, A., Moser, B. Immunity (2005) [Pubmed]
  28. The transcriptional repressor Gfi1 controls STAT3-dependent dendritic cell development and function. Rathinam, C., Geffers, R., Yücel, R., Buer, J., Welte, K., Möröy, T., Klein, C. Immunity (2005) [Pubmed]
  29. R5 HIV productively infects Langerhans cells, and infection levels are regulated by compound CCR5 polymorphisms. Kawamura, T., Gulden, F.O., Sugaya, M., McNamara, D.T., Borris, D.L., Lederman, M.M., Orenstein, J.M., Zimmerman, P.A., Blauvelt, A. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  30. Immunological and viral factors associated with the response of vulval intraepithelial neoplasia to photodynamic therapy. Abdel-Hady, E.S., Martin-Hirsch, P., Duggan-Keen, M., Stern, P.L., Moore, J.V., Corbitt, G., Kitchener, H.C., Hampson, I.N. Cancer Res. (2001) [Pubmed]
  31. Measles virus induces abnormal differentiation of CD40 ligand-activated human dendritic cells. Servet-Delprat, C., Vidalain, P.O., Bausinger, H., Manié, S., Le Deist, F., Azocar, O., Hanau, D., Fischer, A., Rabourdin-Combe, C. J. Immunol. (2000) [Pubmed]
  32. CD40-CD40 ligand interactions in vivo regulate migration of antigen-bearing dendritic cells from the skin to draining lymph nodes. Moodycliffe, A.M., Shreedhar, V., Ullrich, S.E., Walterscheid, J., Bucana, C., Kripke, M.L., Flores-Romo, L. J. Exp. Med. (2000) [Pubmed]
  33. Cutting edge: secondary lymphoid-tissue chemokine (SLC) and CC chemokine receptor 7 (CCR7) participate in the emigration pathway of mature dendritic cells from the skin to regional lymph nodes. Saeki, H., Moore, A.M., Brown, M.J., Hwang, S.T. J. Immunol. (1999) [Pubmed]
  34. Distribution of CD1a-positive Langerhans cells and lymphocyte subsets in transitional cell carcinoma of the urinary bladder. An immunohistological study on frozen sections. Ioachim-Velogianni, E., Stavropoulos, N.E., Kitsiou, E., Stefanaki, S., Agnantis, N.J. J. Pathol. (1995) [Pubmed]
  35. Ratio of Langerhans cells to Thy-1+ dendritic epidermal cells in murine epidermis influences the intensity of contact hypersensitivity. Bigby, M., Kwan, T., Sy, M.S. J. Invest. Dermatol. (1987) [Pubmed]
  36. Induction of low zone tolerance to contact allergens in mice does not require functional Langerhans cells. Steinbrink, K., Kolde, G., Sorg, C., Macher, E. J. Invest. Dermatol. (1996) [Pubmed]
WikiGenes - Universities