Glutamate uptake impairment and neuronal damage in young and aged rats in vivo.
The extracellular concentration of glutamate increases during hypoxia/ischemia probably due to deficient uptake. Glutamate might contribute to neuronal damage associated with this disorder and to neurodegeneration during aging. In the present study, we have tested the effect of two inhibitors of glutamate transport, L-trans-pyrrolidine-2,4-dicarboxylate and dihydrokainate, on the extracellular levels of glutamate and on neuronal damage, which was quantitatively studied by image analysis of histological brain sections. Drugs were administered by microdialysis and glutamate concentration was determined by HPLC in the striatum and the hippocampus of 3-month-old and 22-24-month-old rats. In both regions studied, the basal concentration of extracellular glutamate was higher in aged than in young rats. Pyrrolidine dicarboxylate induced a substantial elevation of extracellular glutamate in both regions, and although this increase was almost twofold higher in old than in young animals, no neuronal damage was observed. In contrast, dihydrokainate had a poor effect on glutamate levels, but induced clear neuronal damage in the striatum and the hippocampus in both groups of rats. The present results suggest that age appears not to be a significant factor in the sensitivity of neurons to the toxic effect of extracellular glutamate increase via blockade of its transport system.[1]References
- Glutamate uptake impairment and neuronal damage in young and aged rats in vivo. Massieu, L., Tapia, R. J. Neurochem. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg