The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Dihydrokainate     (2S,3S,4R)-3-(carboxymethyl)- 4-propan-2-yl...

Synonyms: CHEMBL279561, SureCN155919, CHEBI:43562, D1064_SIGMA, CHEBI:122565, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Dihydrokainate


High impact information on Dihydrokainate


Chemical compound and disease context of Dihydrokainate

  • Vehicle, dihydrokainate (DHK, 1 mmol/L), a GLT-1 inhibitor, or tamoxifen (50 micromol/L), a VRAC inhibitor, were administered continuously via the dialysis probes starting one hour prior to ischemia [11].

Biological context of Dihydrokainate

  • In support of this hypothesis, a 20-24 h exposure to 1 mm dihydrokainate reduced cell survival to only 14.8 +/- 9.8% in neuronal cultures (P < 0.001; n = 3), although it had no effect on neuronal survival in astrocyte-rich cultures (P > 0.05; n = 3) [3].
  • Esterification of either kainate or dihydrokainate rendered the compounds inactive as did the addition of a benzyloxycarbonyl group on the nitrogen of both compounds [12].
  • However, DKA had no significant effect on EEG or evoked potentials [13].
  • Quantitative autoradiography of [3H]L-aspartate binding in thaw-mounted sections of rat brain has shown that L-trans-pyrrolidine-2,4-dicarboxylate and D-threo-3-hydroxyaspartate but not DL-2 aminoadipate strongly interacted with the binding sites while dihydrokainate, kainate and beta-aminoadipate produced only weak effects [14].

Anatomical context of Dihydrokainate


Associations of Dihydrokainate with other chemical compounds


Gene context of Dihydrokainate


Analytical, diagnostic and therapeutic context of Dihydrokainate


  1. Modulation of human glutamate transporter activity by phorbol ester. Ganel, R., Crosson, C.E. J. Neurochem. (1998) [Pubmed]
  2. Mechanism of glutamate release from rat hippocampal slices during in vitro ischemia. Roettger, V., Lipton, P. Neuroscience (1996) [Pubmed]
  3. Dihydrokainate-sensitive neuronal glutamate transport is required for protection of rat cortical neurons in culture against synaptically released glutamate. Wang, G.J., Chung, H.J., Schnuer, J., Lea, E., Robinson, M.B., Potthoff, W.K., Aizenman, E., Rosenberg, P.A. Eur. J. Neurosci. (1998) [Pubmed]
  4. Evidence that reversed glutamate uptake contributes significantly to glutamate release following experimental injury to the rat spinal cord. McAdoo, D.J., Xu, G., Robak, G., Hughes, M.G., Price, E.M. Brain Res. (2000) [Pubmed]
  5. Inhibition of glial glutamate transporter GLT-1 augments brain edema after transient focal cerebral ischemia in mice. Namura, S., Maeno, H., Takami, S., Jiang, X.F., Kamichi, S., Wada, K., Nagata, I. Neurosci. Lett. (2002) [Pubmed]
  6. Two serine residues of the glutamate transporter GLT-1 are crucial for coupling the fluxes of sodium and the neurotransmitter. Zhang, Y., Kanner, B.I. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  7. Neuronal expression of the glutamate transporter GLT-1 in hippocampal microcultures. Mennerick, S., Dhond, R.P., Benz, A., Xu, W., Rothstein, J.D., Danbolt, N.C., Isenberg, K.E., Zorumski, C.F. J. Neurosci. (1998) [Pubmed]
  8. Neuronal regulation of glutamate transporter subtype expression in astrocytes. Swanson, R.A., Liu, J., Miller, J.W., Rothstein, J.D., Farrell, K., Stein, B.A., Longuemare, M.C. J. Neurosci. (1997) [Pubmed]
  9. Na(+)-dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) of the blood-brain barrier. A mechanism for glutamate removal. O'Kane, R.L., Martínez-López, I., DeJoseph, M.R., Viña, J.R., Hawkins, R.A. J. Biol. Chem. (1999) [Pubmed]
  10. Activated microglia initiate motor neuron injury by a nitric oxide and glutamate-mediated mechanism. Zhao, W., Xie, W., Le, W., Beers, D.R., He, Y., Henkel, J.S., Simpson, E.P., Yen, A.A., Xiao, Q., Appel, S.H. J. Neuropathol. Exp. Neurol. (2004) [Pubmed]
  11. Volume-regulated anion channels are the predominant contributors to release of excitatory amino acids in the ischemic cortical penumbra. Feustel, P.J., Jin, Y., Kimelberg, H.K. Stroke (2004) [Pubmed]
  12. Actions of glutamate, kainate, dihydrokainate and analogues on leech neurone acidic amino acid receptors. James, V.A., Sharma, R.P., Walker, R.J., Wheal, H.V. Eur. J. Pharmacol. (1980) [Pubmed]
  13. Kainic acid-induced changes of extracellular amino acid levels, evoked potentials and EEG activity in the rabbit olfactory bulb. Jacobson, I., Hamberger, A. Brain Res. (1985) [Pubmed]
  14. Autoradiographic studies indicate regional variations in the characteristics of L-glutamate transporters in the rat brain. Killinger, S., Blume, G.L., Bohart, L., Bested, A., Dias, L.S., Cooper, B., Allan, R.D., Balcar, V.J. Neurosci. Lett. (1996) [Pubmed]
  15. Comparison of Na+-dependent glutamate transport activity in synaptosomes, C6 glioma, and Xenopus oocytes expressing excitatory amino acid carrier 1 (EAAC1). Dowd, L.A., Coyle, A.J., Rothstein, J.D., Pritchett, D.B., Robinson, M.B. Mol. Pharmacol. (1996) [Pubmed]
  16. Glutamate uptake impairment and neuronal damage in young and aged rats in vivo. Massieu, L., Tapia, R. J. Neurochem. (1997) [Pubmed]
  17. Heterogeneity of sodium-dependent excitatory amino acid uptake mechanisms in rat brain. Ferkany, J., Coyle, J.T. J. Neurosci. Res. (1986) [Pubmed]
  18. Effects of dihydrokainic acid on extracellular amino acids and neuronal excitability in the in vivo rat hippocampus. Muñoz, M.D., Herreras, O., Herranz, A.S., Solís, J.M., Martín del Río, R., Lerma, J. Neuropharmacology (1987) [Pubmed]
  19. Expression of glutamate transporters in rat optic nerve oligodendrocytes. Domercq, M., Sánchez-Gómez, M.V., Areso, P., Matute, C. Eur. J. Neurosci. (1999) [Pubmed]
  20. Accumulation of extracellular glutamate by inhibition of its uptake is not sufficient for inducing neuronal damage: an in vivo microdialysis study. Massieu, L., Morales-Villagrán, A., Tapia, R. J. Neurochem. (1995) [Pubmed]
  21. Expression of excitatory amino acid receptors by cerebellar cells of the type-2 astrocyte cell lineage. Gallo, V., Giovannini, C., Suergiu, R., Levi, G. J. Neurochem. (1989) [Pubmed]
  22. [(3)H](2S,4R)-4-Methylglutamate: a novel ligand for the characterization of glutamate transporters. Apricó, K., Beart, P.M., Lawrence, A.J., Crawford, D., O'Shea, R.D. J. Neurochem. (2001) [Pubmed]
  23. Kainic acid selectively stimulates the release of endogenous excitatory acidic amino acids. Ferkany, J.W., Coyle, J.T. J. Pharmacol. Exp. Ther. (1983) [Pubmed]
  24. Pharmacologically distinct sodium-dependent L-[3H]glutamate transport processes in rat brain. Robinson, M.B., Hunter-Ensor, M., Sinor, J. Brain Res. (1991) [Pubmed]
  25. DL-threo-beta-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters. Shimamoto, K., Lebrun, B., Yasuda-Kamatani, Y., Sakaitani, M., Shigeri, Y., Yumoto, N., Nakajima, T. Mol. Pharmacol. (1998) [Pubmed]
  26. The glutamate-aspartate transporter GLAST mediates glutamate uptake at inner hair cell afferent synapses in the mammalian cochlea. Glowatzki, E., Cheng, N., Hiel, H., Yi, E., Tanaka, K., Ellis-Davies, G.C., Rothstein, J.D., Bergles, D.E. J. Neurosci. (2006) [Pubmed]
  27. Induction of astrocyte glutamine synthetase activity by the Lathyrus toxin beta-N-oxalyl-L-alpha,beta-diaminopropionic acid (beta-L-ODAP). Miller, S., Nunn, P.B., Bridges, R.J. Glia (1993) [Pubmed]
  28. Excitatory amino acid pathways in brain-stimulation reward. Herberg, L.J., Rose, I.C. Behav. Brain Res. (1990) [Pubmed]
  29. Neuronal damage and MAP2 changes induced by the glutamate transport inhibitor dihydrokainate and by kainate in rat hippocampus in vivo. Arias, C., Arrieta, I., Massieu, L., Tapia, R. Experimental brain research. Experimentelle Hirnforschung. Expérimentation cérébrale. (1997) [Pubmed]
  30. Amphetamine increases glutamate efflux in the rat ventral tegmental area by a mechanism involving glutamate transporters and reactive oxygen species. Wolf, M.E., Xue, C.J., Li, Y., Wavak, D. J. Neurochem. (2000) [Pubmed]
  31. The effect of an uptake inhibitor (dihydrokainate) on endogenous excitatory amino acids in the lamprey spinal cord as revealed by microdialysis. Brodin, L., Tossman, U., Ohta, Y., Ungerstedt, U., Grillner, S. Brain Res. (1988) [Pubmed]
  32. Inhibition of glutamate transporters increases the minimum alveolar concentration for isoflurane in rats. Cechova, S., Zuo, Z. British journal of anaesthesia. (2006) [Pubmed]
WikiGenes - Universities