Anaerobic metabolism of L-phenylalanine via benzoyl-CoA in the denitrifying bacterium Thauera aromatica.
The anaerobic metabolism of phenylalanine was studied in the denitrifying bacterium Thauera aromatica, a member of the beta-subclass of the Proteobacteria. Phenylalanine was completely oxidized and served as the sole source of cell carbon. Evidence is presented that degradation proceeds via benzoyl-CoA as the central aromatic intermediate; the aromatic ring-reducing enzyme benzoyl-CoA reductase was present in cells grown on phenylalanine. Intermediates in phenylalanine oxidation to benzoyl-CoA were phenylpyruvate, phenylacetaldehyde, phenylacetate, phenylacetyl-CoA, and phenylglyoxylate. The required enzymes were detected in extracts of cells grown with phenylalanine and nitrate. Oxidation of phenylalanine to benzoyl-CoA was catalyzed by phenylalanine transaminase, phenylpyruvate decarboxylase, phenylacetaldehyde dehydrogenase (NAD+), phenylacetate-CoA ligase (AMP-forming), enzyme(s) oxidizing phenylacetyl-CoA to phenylglyoxylate with nitrate, and phenylglyoxylate:acceptor oxidoreductase. The capacity for phenylalanine oxidation to phenylacetate was induced during growth with phenylalanine. Evidence is provided that alpha-oxidation of phenylacetyl-CoA is catalyzed by a membrane-bound enzyme. This is the first report on the complete anaerobic degradation of an aromatic amino acid and the regulation of this process.[1]References
- Anaerobic metabolism of L-phenylalanine via benzoyl-CoA in the denitrifying bacterium Thauera aromatica. Schneider, S., Mohamed, M.E., Fuchs, G. Arch. Microbiol. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg