The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

SureCN243721     (Z)-2-hydroxy-3-phenyl-prop- 2-enoic acid

Synonyms: HMDB12225, NSC-280708, AC1Q5SPW, NSC280708, AR-1E2384, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of phenylpyruvate

 

High impact information on phenylpyruvate

 

Chemical compound and disease context of phenylpyruvate

 

Biological context of phenylpyruvate

 

Anatomical context of phenylpyruvate

 

Associations of phenylpyruvate with other chemical compounds

 

Gene context of phenylpyruvate

  • The K(m) and V(max) values of the two activities differed, showing that Aro10p is the physiologically relevant phenylpyruvate decarboxylase in wild-type cells [26].
  • Mechanism of the phenylpyruvate tautomerase activity of macrophage migration inhibitory factor: properties of the P1G, P1A, Y95F, and N97A mutants [28].
  • Although a detailed understanding of the biological functions of MIF has not yet been found, it is known that MIF catalyzes the tautomerization of phenylpyruvate and a non-physiological molecule, D-dopachrome [29].
  • Recently, it has been reported that MIF has D-dopachrome tautomerase, phenylpyruvate tautomerase and thiol protein oxidoreductase activities, although the physiological significance of those activities is not yet clear [30].
  • Phenylpyruvate was the most effective inhibitor, reducing activity to 0.2% of control values in the extract, and 11% of control values for purified MPST when added to the reaction at 30 mM [31].
 

Analytical, diagnostic and therapeutic context of phenylpyruvate

References

  1. Phenylpyruvate, fetal damage, and maternal phenylketonuria syndrome. Dorland, L., Poll-The, B.T., Duran, M., Smeitink, J.A., Berger, R. Lancet (1993) [Pubmed]
  2. Phenylketonuria: metabolic alterations induced by phenylalanine and phenylpyruvate. Patel, M.S., Arinze, I.J. Am. J. Clin. Nutr. (1975) [Pubmed]
  3. Aromatic aminotransferases in coryneform bacteria. Fazel, A.M., Jensen, R.A. J. Bacteriol. (1979) [Pubmed]
  4. A single cyclohexadienyl dehydratase specifies the prephenate dehydratase and arogenate dehydratase components of one of two independent pathways to L-phenylalanine in Erwinia herbicola. Xia, T.H., Ahmad, S., Zhao, G.S., Jensen, R.A. Arch. Biochem. Biophys. (1991) [Pubmed]
  5. Xenofuranones A and B: phenylpyruvate dimers from Xenorhabdus szentirmaii. Brachmann, A.O., Forst, S., Furgani, G.M., Fodor, A., Bode, H.B. J. Nat. Prod. (2006) [Pubmed]
  6. Parallel control of hepatic proteolysis by phenylalanine and phenylpyruvate through independent inhibitory sites at the plasma membrane. Kadowaki, M., Pösö, A.R., Mortimore, G.E. J. Biol. Chem. (1992) [Pubmed]
  7. A multispecific quintet of aromatic aminotransferases that overlap different biochemical pathways in Pseudomonas aeruginosa. Whitaker, R.J., Gaines, C.G., Jensen, R.A. J. Biol. Chem. (1982) [Pubmed]
  8. Guided evolution of enzymes with new substrate specificities. el Hawrani, A.S., Sessions, R.B., Moreton, K.M., Holbrook, J.J. J. Mol. Biol. (1996) [Pubmed]
  9. Phenylalanine metabolites, attention span and hyperactivity. Michals, K., Matalon, R. Am. J. Clin. Nutr. (1985) [Pubmed]
  10. Some insights into the stereochemistry of inhibition of macrophage migration inhibitory factor with 2-fluoro-p-hydroxycinnamate and its analogues from molecular dynamics simulations. Zhuang, S., Zou, J., Jiang, Y., Mao, X., Zhang, B., Liu, H., Yu, Q. J. Med. Chem. (2005) [Pubmed]
  11. Design of a specific phenyllactate dehydrogenase by peptide loop exchange on the Bacillus stearothermophilus lactate dehydrogenase framework. Wilks, H.M., Moreton, K.M., Halsall, D.J., Hart, K.W., Sessions, R.D., Clarke, A.R., Holbrook, J.J. Biochemistry (1992) [Pubmed]
  12. Spectroscopic and electronic structure studies of the role of active site interactions in the decarboxylation reaction of alpha-keto acid-dependent dioxygenases. Neidig, M.L., Brown, C.D., Kavana, M., Choroba, O.W., Spencer, J.B., Moran, G.R., Solomon, E.I. J. Inorg. Biochem. (2006) [Pubmed]
  13. N-methyl-L-amino acid dehydrogenase from Pseudomonas putida. A novel member of an unusual NAD(P)-dependent oxidoreductase superfamily. Mihara, H., Muramatsu, H., Kakutani, R., Yasuda, M., Ueda, M., Kurihara, T., Esaki, N. FEBS J. (2005) [Pubmed]
  14. Chorismate mutase-prephenate dehydratase from Escherichia coli: active sites of a bifunctional enzyme. Duggleby, R.G., Sneddon, M.K., Morrison, J.F. Biochemistry (1978) [Pubmed]
  15. Enzymatically inactive macrophage migration inhibitory factor inhibits monocyte chemotaxis and random migration. Hermanowski-Vosatka, A., Mundt, S.S., Ayala, J.M., Goyal, S., Hanlon, W.A., Czerwinski, R.M., Wright, S.D., Whitman, C.P. Biochemistry (1999) [Pubmed]
  16. Clofibric acid, phenylpyruvate, and dichloroacetate inhibition of branched-chain alpha-ketoacid dehydrogenase kinase in vitro and in perfused rat heart. Paxton, R., Harris, R.A. Arch. Biochem. Biophys. (1984) [Pubmed]
  17. The (2R)-hydroxycarboxylate-viologen-oxidoreductase from Proteus vulgaris is a molybdenum-containing iron-sulphur protein. Trautwein, T., Krauss, F., Lottspeich, F., Simon, H. Eur. J. Biochem. (1994) [Pubmed]
  18. Effects of phenylalanine and phenylpyruvate on ATP-ADP hydrolysis by rat blood serum. Rücker, B., Oses, J.P., Kirst, I.B., Berti, S.L., Bonan, C.D., Battastini, A.M., Sarkis, J.J. Amino Acids (2003) [Pubmed]
  19. Inhibition of acetoacetate oxidation by brain mitochondria from the suckling rat by phenylpyruvate and alpha ketoisocaproate. Patel, T.B., Booth, R.F., Clark, J.B. J. Neurochem. (1977) [Pubmed]
  20. Metabolism of DL-(+/-)-phenylalanine by Aspergillus niger. Kishore, G., Sugumaran, M., Vaidyanathan, C.S. J. Bacteriol. (1976) [Pubmed]
  21. Phenylalanine and phenylpyruvate inhibit ATP diphosphohydrolase from rat brain cortex. Berti, S.L., Bonan, C.D., da Silva, F.L., Battastini, A.M., Sarkis, J.J., Wannmacher, C.M. Int. J. Dev. Neurosci. (2001) [Pubmed]
  22. Excretion of phenylpyruvic, 4-hydroxyphenylpyruvic and indolyl-3-acetic acids by the skin fibroblasts from a phenylketonuric child. Antoshechkin, A.G., Zuyeva, L.A., Maximova, L.A. J. Inherit. Metab. Dis. (1988) [Pubmed]
  23. (4-Hydroxyphenyl)pyruvate dioxygenase from Streptomyces avermitilis: the basis for ordered substrate addition. Johnson-Winters, K., Purpero, V.M., Kavana, M., Nelson, T., Moran, G.R. Biochemistry (2003) [Pubmed]
  24. Macrophage migration inhibitory factor of the parasitic nematode Trichinella spiralis. Tan, T.H., Edgerton, S.A., Kumari, R., McAlister, M.S., Roe, S.M., Nagl, S., Pearl, L.H., Selkirk, M.E., Bianco, A.E., Totty, N.F., Engwerda, C., Gray, C.A., Meyer, D.J., Rowe, S.M. Biochem. J. (2001) [Pubmed]
  25. Effect of phenylalanine metabolites on the activities of enzymes of ketone-body utilization in brain of suckling rats. Benavides, J., Gimenez, C., Valdivieso, F., Mayor, F. Biochem. J. (1976) [Pubmed]
  26. Identification and characterization of phenylpyruvate decarboxylase genes in Saccharomyces cerevisiae. Vuralhan, Z., Morais, M.A., Tai, S.L., Piper, M.D., Pronk, J.T. Appl. Environ. Microbiol. (2003) [Pubmed]
  27. A simple spectrophotometric assay for arogenate dehydratase. Ahmad, S., Jensen, R.A. Anal. Biochem. (1987) [Pubmed]
  28. Mechanism of the phenylpyruvate tautomerase activity of macrophage migration inhibitory factor: properties of the P1G, P1A, Y95F, and N97A mutants. Stamps, S.L., Taylor, A.B., Wang, S.C., Hackert, M.L., Whitman, C.P. Biochemistry (2000) [Pubmed]
  29. Macrophage migration inhibitory factor and the discovery of tautomerase inhibitors. Orita, M., Yamamoto, S., Katayama, N., Fujita, S. Curr. Pharm. Des. (2002) [Pubmed]
  30. Macrophage migration inhibitory factor (MIF)--its role in catecholamine metabolism. Matsunaga, J., Sinha, D., Solano, F., Santis, C., Wistow, G., Hearing, V. Cell. Mol. Biol. (Noisy-le-grand) (1999) [Pubmed]
  31. Modifiers of mercaptopyruvate sulfurtransferase catalyzed conversion of cyanide to thiocyanate in vitro. Wing, D.A., Baskin, S.I. J. Biochem. Toxicol. (1992) [Pubmed]
  32. High-performance liquid chromatography assays of phenylpyruvate and phenylpyruvate oxidase. Hill, J.A., Kitto, G.B. J. Chromatogr. (1985) [Pubmed]
 
WikiGenes - Universities