The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

phenylacetate     2-phenylethanoic acid

Synonyms: Benzeneacetate, a-Toluate, alpha-Toluate, a-Toluic acid, CHEMBL1044, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of 7188-16-1


Psychiatry related information on 7188-16-1

  • Results of this investigation clearly define the harmful effects of phenylacetate on developing neurons and are compatible with the clinical observation that brain damage in phenylketonuria occurs mainly during the first few years of life, the critical period of neuronal development [5].
  • Results of this investigation indicate that growth retardation induced by phenylacetate during the period of very rapid development of the brain is responsible for the mental retardation in phenylketonuria [6].

High impact information on 7188-16-1


Chemical compound and disease context of 7188-16-1


Biological context of 7188-16-1


Anatomical context of 7188-16-1


Associations of 7188-16-1 with other chemical compounds


Gene context of 7188-16-1


Analytical, diagnostic and therapeutic context of 7188-16-1


  1. Selective growth arrest and phenotypic reversion of prostate cancer cells in vitro by nontoxic pharmacological concentrations of phenylacetate. Samid, D., Shack, S., Myers, C.E. J. Clin. Invest. (1993) [Pubmed]
  2. Induction of erythroid differentiation and fetal hemoglobin production in human leukemic cells treated with phenylacetate. Samid, D., Yeh, A., Prasanna, P. Blood (1992) [Pubmed]
  3. Enhanced fetal hemoglobin production by phenylacetate and 4-phenylbutyrate in erythroid precursors derived from normal donors and patients with sickle cell anemia and beta-thalassemia. Fibach, E., Prasanna, P., Rodgers, G.P., Samid, D. Blood (1993) [Pubmed]
  4. Neuropathology of phenylacetate poisoning in rats: an experimental model of phenylketonuria. Wen, G.Y., Wisniewski, H.M., Shek, J.W., Loo, Y.H., Fulton, T.R. Ann. Neurol. (1980) [Pubmed]
  5. Purkinje cell dendritic development in experimental phenylketonuria. A quantitative analysis. Robain, O., Wen, G.Y., Wisniewski, H.M., Shek, J.W., Loo, Y.H. Acta Neuropathol. (1981) [Pubmed]
  6. Myelin deficiency in experimental phenylketonuria: contribution of the aromatic acid metabolites of phenylalanine. Loo, Y.H., Scotto, J., Wisniewski, H.M. Adv. Exp. Med. Biol. (1978) [Pubmed]
  7. Paraoxonase polymorphism Met-Leu54 is associated with modified serum concentrations of the enzyme. A possible link between the paraoxonase gene and increased risk of cardiovascular disease in diabetes. Garin, M.C., James, R.W., Dussoix, P., Blanché, H., Passa, P., Froguel, P., Ruiz, J. J. Clin. Invest. (1997) [Pubmed]
  8. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. Pahan, K., Sheikh, F.G., Namboodiri, A.M., Singh, I. J. Clin. Invest. (1997) [Pubmed]
  9. Selective activity of phenylacetate against malignant gliomas: resemblance to fetal brain damage in phenylketonuria. Samid, D., Ram, Z., Hudgins, W.R., Shack, S., Liu, L., Walbridge, S., Oldfield, E.H., Myers, C.E. Cancer Res. (1994) [Pubmed]
  10. Characterization of a fungal maleylacetoacetate isomerase gene and identification of its human homologue. Fernández-Cañón, J.M., Peñalva, M.A. J. Biol. Chem. (1998) [Pubmed]
  11. Lipid metabolism as a target for brain cancer therapy: synergistic activity of lovastatin and sodium phenylacetate against human glioma cells. Prasanna, P., Thibault, A., Liu, L., Samid, D. J. Neurochem. (1996) [Pubmed]
  12. Phenylacetate synergizes with retinoic acid in inducing the differentiation of human neuroblastoma cells. Sidell, N., Wada, R., Han, G., Chang, B., Shack, S., Moore, T., Samid, D. Int. J. Cancer (1995) [Pubmed]
  13. Two similar gene clusters coding for enzymes of a new type of aerobic 2-aminobenzoate (anthranilate) metabolism in the bacterium Azoarcus evansii. Schühle, K., Jahn, M., Ghisla, S., Fuchs, G. J. Bacteriol. (2001) [Pubmed]
  14. Sodium phenylacetate induces growth inhibition and Bcl-2 down-regulation and apoptosis in MCF7ras cells in vitro and in nude mice. Adam, L., Crépin, M., Savin, C., Israël, L. Cancer Res. (1995) [Pubmed]
  15. A phase I and pharmacokinetic study of intravenous phenylacetate in patients with cancer. Thibault, A., Cooper, M.R., Figg, W.D., Venzon, D.J., Sartor, A.O., Tompkins, A.C., Weinberger, M.S., Headlee, D.J., McCall, N.A., Samid, D. Cancer Res. (1994) [Pubmed]
  16. Phenylacetate: a novel nontoxic inducer of tumor cell differentiation. Samid, D., Shack, S., Sherman, L.T. Cancer Res. (1992) [Pubmed]
  17. Disruption of phacA, an Aspergillus nidulans gene encoding a novel cytochrome P450 monooxygenase catalyzing phenylacetate 2-hydroxylation, results in penicillin overproduction. Mingot, J.M., Peñalva, M.A., Fernández-Cañón, J.M. J. Biol. Chem. (1999) [Pubmed]
  18. Growth inhibition, tumor maturation, and extended survival in experimental brain tumors in rats treated with phenylacetate. Ram, Z., Samid, D., Walbridge, S., Oshiro, E.M., Viola, J.J., Tao-Cheng, J.H., Shack, S., Thibault, A., Myers, C.E., Oldfield, E.H. Cancer Res. (1994) [Pubmed]
  19. Vulnerability of multidrug-resistant tumor cells to the aromatic fatty acids phenylacetate and phenylbutyrate. Shack, S., Miller, A., Liu, L., Prasanna, P., Thibault, A., Samid, D. Clin. Cancer Res. (1996) [Pubmed]
  20. Phenylacetate inhibits protein isoprenylation and growth of the androgen-independent LNCaP prostate cancer cells transfected with the T24 Ha-ras oncogene. Danesi, R., Nardini, D., Basolo, F., Del Tacca, M., Samid, D., Myers, C.E. Mol. Pharmacol. (1996) [Pubmed]
  21. Phenylacetate inhibits growth and vascular endothelial growth factor secretion in human thyroid carcinoma cells and modulates their differentiated function. Kebebew, E., Wong, M.G., Siperstein, A.E., Duh, Q.Y., Clark, O.H. J. Clin. Endocrinol. Metab. (1999) [Pubmed]
  22. Impact of the putative differentiating agents sodium phenylbutyrate and sodium phenylacetate on proliferation, differentiation, and apoptosis of primary neoplastic myeloid cells. Gore, S.D., Samid, D., Weng, L.J. Clin. Cancer Res. (1997) [Pubmed]
  23. On the possible mechanism of phenylacetate neurotoxicity: inhibition of choline acetyltransferase by phenylacetyl-CoA. Potempska, A., Loo, Y.H., Wisniewski, H.M. J. Neurochem. (1984) [Pubmed]
  24. Phenylbutyrate-induced G1 arrest and apoptosis in myeloid leukemia cells: structure-function analysis. DiGiuseppe, J.A., Weng, L.J., Yu, K.H., Fu, S., Kastan, M.B., Samid, D., Gore, S.D. Leukemia (1999) [Pubmed]
  25. Lack of association between serum paraoxonase 1 activities and increased oxidized low-density lipoprotein levels in impaired glucose tolerance and newly diagnosed diabetes mellitus. Kopprasch, S., Pietzsch, J., Kuhlisch, E., Graessler, J. J. Clin. Endocrinol. Metab. (2003) [Pubmed]
  26. Transcriptional upregulation of retinoic acid receptor beta (RAR beta) expression by phenylacetate in human neuroblastoma cells. Sidell, N., Chang, B., Yamashiro, J.M., Wada, R.K. Exp. Cell Res. (1998) [Pubmed]
  27. Up-regulation and functional role of p21Waf1/Cip1 during growth arrest of human breast carcinoma MCF-7 cells by phenylacetate. Gorospe, M., Shack, S., Guyton, K.Z., Samid, D., Holbrook, N.J. Cell Growth Differ. (1996) [Pubmed]
  28. Functional genomics by NMR spectroscopy. Phenylacetate catabolism in Escherichia coli. Ismail, W., El-Said Mohamed, M., Wanner, B.L., Datsenko, K.A., Eisenreich, W., Rohdich, F., Bacher, A., Fuchs, G. Eur. J. Biochem. (2003) [Pubmed]
  29. Phase II study of phenylacetate in patients with recurrent malignant glioma: a North American Brain Tumor Consortium report. Chang, S.M., Kuhn, J.G., Robins, H.I., Schold, S.C., Spence, A.M., Berger, M.S., Mehta, M.P., Bozik, M.E., Pollack, I., Schiff, D., Gilbert, M., Rankin, C., Prados, M.D. J. Clin. Oncol. (1999) [Pubmed]
  30. Sodium phenylacetate inhibits adoptive transfer of experimental allergic encephalomyelitis in SJL/J mice at multiple steps. Dasgupta, S., Zhou, Y., Jana, M., Banik, N.L., Pahan, K. J. Immunol. (2003) [Pubmed]
  31. Phenylbutyrate and phenylacetate induce differentiation and inhibit proliferation of human medulloblastoma cells. Li, X.N., Parikh, S., Shu, Q., Jung, H.L., Chow, C.W., Perlaky, L., Leung, H.C., Su, J., Blaney, S., Lau, C.C. Clin. Cancer Res. (2004) [Pubmed]
  32. Phenylacetate in chemoprevention: in vitro and in vivo suppression of 5-aza-2'-deoxycytidine-induced carcinogenesis. Prasanna, P., Shack, S., Wilson, V.L., Samid, D. Clin. Cancer Res. (1995) [Pubmed]
WikiGenes - Universities