The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Cellulose depolymerization to glucose and other water soluble polysaccharides by shear deformation and high pressure treatment.

The simultaneous action of shear deformation and high pressure (SDHP) creates changes in the structure of wood and its main components (cellulose, hemicelluloses, lignin). The formation of water and alkali soluble polysaccharides under SDHP action, proceeds in seconds in the solid state, without the use of any reagents and solvents. Therefore, SDHP seems to be a technologically safe method and friendly to the environment. The amorphization of cellulose crystallites and depolymerization of cellulose chains were observed under a wide range of pressures (1-6 GPa), both for cellulose samples and the cellulose part of wood. Similar depolymerization occurs in the hemicellulose part of wood. The decomposition of polysaccharides under SDHP causes the formation of the water soluble part, whose content increases with pressure and the applied shear deformation. A maximum solubility of 40% and 55% was registered at 6 GPa following treatment of cellulose and birch wood samples. A higher output in the case of wood can be explained by a specific role of lignin under SDHP, which acts as a 'grinding stone' during cellulose and hemicelluloses destruction. As shown by high-performance size exclusion chromatography, the water soluble fraction obtained from cellulose contained glucose (2.6%), cellobiose (9.6%), cellotriose (16.6%) and other higher water soluble oligomers (71%). Almost complete dissolution (98%) of the treated cellulose sample can be achieved by extraction with 10% NaOH solution. The SDHP treated birch wood was subjected to submerged fermentation (with Trichoderma viride), and a 13% output of proteins was obtained. In this case, the water soluble part played the role of the so called 'start sugars'.[1]


WikiGenes - Universities