The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

CHEBI:18246     (2S,3R,4S,5S,6R)-2- [(2R,3S,4R,5R,6R)-4,5...

Synonyms: AC1L9A9A, 33404-34-1, CT3, BGC-(1-4)BGC-(1-4)BGC, GLC-(1-4)GLC-(1-4)GLC, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cellotriose

  • Characterization of the binding protein-dependent cellobiose and cellotriose transport system of the cellulose degrader Streptomyces reticuli [1].
  • During the growth of Clostridium cellulolyticum in chemostat cultures with ammonia as the growth-limiting nutrient, as much as 30% of the original cellobiose consumed by C. cellulolyticum was converted to cellotriose, glycogen, and polysaccharides regardless of the specific growth rates [2].
  • When glucose or cellobiose was provided as an energy source for Fibrobacter succinogenes, there was a transient accumulation (as much as 0.4 mM hexose equivalent) of cellobiose or cellotriose, respectively, in the growth medium [3].
 

High impact information on Cellotriose

  • The value of (D2O)(V) of 1.16 +/- 0.14 for hydrolysis of cellotriose suggests that the large direct effect expected for proton transfer from the nucleophilic water through a water chain (Grotthus mechanism) is offset by an inverse effect arising from reversibly breaking the short, tight hydrogen bond between D221 and D175 before catalysis [4].
  • The active-site topology of the CBH I from T. reesei was further probed by equilibrium binding experiments with cellobiose, cellotriose, lactose and some of their derivatives [5].
  • Competition and inducibility experiments indicated that C. gelida possesses at least two types of separately regulated cellobiose chemoreceptors (Cb1 and cellobiose, cellotriose, xylobiose, and D-glucose, and it is constitutively synthesized [6].
  • In the presence of chloride (0.2 M), the pH optimum of the enzyme was broadened, and the temperature optimum was increased from 39 to 45 degrees C. The enzyme released terminal cellobiose from cellotriose and cellobiose and cellotriose from longer-chain-length cellooligosaccharrides and acid-swollen cellulose, but it had no activity on cellobiose [7].
  • Binding characteristics of CebR, the regulator of the ceb operon required for cellobiose/cellotriose uptake in Streptomyces reticuli [8].
 

Associations of Cellotriose with other chemical compounds

 

Gene context of Cellotriose

 

Analytical, diagnostic and therapeutic context of Cellotriose

References

  1. Characterization of the binding protein-dependent cellobiose and cellotriose transport system of the cellulose degrader Streptomyces reticuli. Schlösser, A., Jantos, J., Hackmann, K., Schrempf, H. Appl. Environ. Microbiol. (1999) [Pubmed]
  2. Kinetic analysis of Clostridium cellulolyticum carbohydrate metabolism: importance of glucose 1-phosphate and glucose 6-phosphate branch points for distribution of carbon fluxes inside and outside cells as revealed by steady-state continuous culture. Guedon, E., Desvaux, M., Petitdemange, H. J. Bacteriol. (2000) [Pubmed]
  3. Cellodextrin efflux by the cellulolytic ruminal bacterium Fibrobacter succinogenes and its potential role in the growth of nonadherent bacteria. Wells, J.E., Russell, J.B., Shi, Y., Weimer, P.J. Appl. Environ. Microbiol. (1995) [Pubmed]
  4. The active site of cellobiohydrolase Cel6A from Trichoderma reesei: the roles of aspartic acids D221 and D175. Koivula, A., Ruohonen, L., Wohlfahrt, G., Reinikainen, T., Teeri, T.T., Piens, K., Claeyssens, M., Weber, M., Vasella, A., Becker, D., Sinnott, M.L., Zou, J.Y., Kleywegt, G.J., Szardenings, M., Ståhlberg, J., Jones, T.A. J. Am. Chem. Soc. (2002) [Pubmed]
  5. Fungal cellulase systems. Comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei. Claeyssens, M., Van Tilbeurgh, H., Tomme, P., Wood, T.M., McRae, S.I. Biochem. J. (1989) [Pubmed]
  6. Cellobiose chemotaxis by the cellulolytic bacterium Cellulomonas gelida. Hsing, W., Canale-Parola, E. J. Bacteriol. (1992) [Pubmed]
  7. Purification and characterization of a chloride-stimulated cellobiosidase from Bacteroides succinogenes S85. Huang, L., Forsberg, C.W., Thomas, D.Y. J. Bacteriol. (1988) [Pubmed]
  8. Binding characteristics of CebR, the regulator of the ceb operon required for cellobiose/cellotriose uptake in Streptomyces reticuli. Schlösser, A., Aldekamp, T., Schrempf, H. FEMS Microbiol. Lett. (2000) [Pubmed]
  9. Structures of oligosaccharide-bound forms of the endoglucanase V from Humicola insolens at 1.9 A resolution. Davies, G.J., Tolley, S.P., Henrissat, B., Hjort, C., Schülein, M. Biochemistry (1995) [Pubmed]
  10. Intronless celB from the anaerobic fungus Neocallimastix patriciarum encodes a modular family A endoglucanase. Zhou, L., Xue, G.P., Orpin, C.G., Black, G.W., Gilbert, H.J., Hazlewood, G.P. Biochem. J. (1994) [Pubmed]
  11. Cloning and characterization of the glucooligosaccharide catabolic pathway beta-glucan glucohydrolase and cellobiose phosphorylase in the marine hyperthermophile Thermotoga neapolitana. Yernool, D.A., McCarthy, J.K., Eveleigh, D.E., Bok, J.D. J. Bacteriol. (2000) [Pubmed]
  12. Progress-curve analysis shows that glucose inhibits the cellotriose hydrolysis catalysed by cellobiohydrolase II from Trichoderma reesei. Teleman, A., Koivula, A., Reinikainen, T., Valkeajärvi, A., Teeri, T.T., Drakenberg, T., Teleman, O. Eur. J. Biochem. (1995) [Pubmed]
  13. Enzymatic properties of cellulases from Humicola insolens. Schülein, M. J. Biotechnol. (1997) [Pubmed]
  14. Cloning and expression of multiple cellulase cDNAs from the anaerobic rumen fungus Neocallimastix patriciarum in Escherichia coli. Xue, G.P., Orpin, C.G., Gobius, K.S., Aylward, J.H., Simpson, G.D. J. Gen. Microbiol. (1992) [Pubmed]
  15. Enteric bacterial catalysts for fuel ethanol production. Ingram, L.O., Aldrich, H.C., Borges, A.C., Causey, T.B., Martinez, A., Morales, F., Saleh, A., Underwood, S.A., Yomano, L.P., York, S.W., Zaldivar, J., Zhou, S. Biotechnol. Prog. (1999) [Pubmed]
  16. Active-site binding of glycosides by Thermomonospora fusca endocellulase E2. Barr, B.K., Wolfgang, D.E., Piens, K., Claeyssens, M., Wilson, D.B. Biochemistry (1998) [Pubmed]
  17. Mechanistic studies of active site mutants of Thermomonospora fusca endocellulase E2. Wolfgang, D.E., Wilson, D.B. Biochemistry (1999) [Pubmed]
  18. Fermentation of cellodextrins by cellulolytic and noncellulolytic rumen bacteria. Russell, J.B. Appl. Environ. Microbiol. (1985) [Pubmed]
  19. Cellulose depolymerization to glucose and other water soluble polysaccharides by shear deformation and high pressure treatment. Kokorevics, A., Gravitis, J. Glycoconj. J. (1997) [Pubmed]
 
WikiGenes - Universities