The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Trichoderma

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Trichoderma

  • Regulation of formation of the extracellular xylanase system of Trichoderma reesei QM 9414 during growth on xylan, cellulose, and replacement onto a number of soluble inducers was investigated by Northern analysis of xyn1 and xyn2 transcripts and by the use of the Escherichia coli hph (hygromycin B-phosphotransferase-encoding) gene as a reporter [1].
  • The enzyme alpha(1-->3),3-glucanohydrolase (referred to as mutanase) from the filamentous fungus Trichoderma harzianum OMZ 779 is capable of degrading the water-insoluble glucan in dental plaque [2].
  • Serine proteinases from Thermoactinomyces vulgaris, Trichoderma koningii, Trichoderma lignorum and bacilli (subtilisins) were also submitted to chromatography on these materials [3].
  • A combination of enzyme preparations from Trichoderma atroviride and Serratia marcescens was able to completely degrade high concentrations (100 g/L) of chitin from langostino crab shells to N-acetylglucosamine (78%), glucosamine (2%), and chitobiose (10%) [4].
  • When 75.4 Somogyi units/50 g of semolina of the endoxylanases from Trichoderma viride (XTV), rumen microorganisms (XRM), Bacillus subtilis (XBS), and Aspergillus niger (XAN) were used, the maximal consistencies at 34.9% moisture decreased for semA to 467, 436, 448, and 417 FU, respectively [5].
 

High impact information on Trichoderma

  • The three-dimensional structure of a cellulase, the enzymatic core of CBHII from the fungus Trichoderma reesei reveals an alpha-beta protein with a fold similar to but different from the widely occurring barrel topology first observed in triose phosphate isomerase [6].
  • A gene, qid74, of mycoparasitic filamentous fungus Trichoderma harzianum and its allies encodes a cell wall protein that is induced by replacing glucose in the culture medium with chitin (simulated mycoparasitism conditions) [7].
  • The high level and the broad spectrum of resistance obtained with a single chitinase gene from Trichoderma overcome the limited efficacy of transgenic expression in plants of chitinase genes from plants and bacteria [8].
  • In this work we have investigated the reversibility and kinetics of the binding of the CBD from Trichoderma reesei cellobiohydrolase I on microcrystalline cellulose [9].
  • To study the mechanisms of protein secretion as well as the cellular responses to impaired protein folding and transport in filamentous fungi, we have analyzed Trichoderma reesei cultures treated with chemical agents that interfere with these processes, dithiothreitol, brefeldin A, and the Ca(2+)-ionophore A23187 [10].
 

Biological context of Trichoderma

 

Anatomical context of Trichoderma

  • While endoplasmic reticulum (E.R.) mannosidases cleave only one mannose to produce the Man8B isomer, an alpha-1,2-mannosidase from Trichoderma reesei can sequentially cleave all four 1,2-linked mannose sugars from a Man(9)GlcNAc(2) oligosaccharide, a feature reminiscent of the activity of Golgi mannosidases [16].
  • It is concluded that the process of photoinduced conidiation in Trichoderma involves phosphorylation of conidiation-specific proteins by (a) cyclic AMP-dependent protein kinase(s) present in the cytosol [17].
  • In method A, yeast cells are converted into spheroplasts by treatment with a highly purified mixture of enzymes from Trichoderma harzianum, the spheroplasts are lysed in a lauroylsarcosinate/EDTA buffer, and the lysate is incubated with proteinase K and then directly centrifuged through a cesium trifluoroacetate gradient [18].
  • Hydroethidine and rhodamine 6G are useful complementary vital stains of Trichoderma protoplasts for visualization of frequency and type (dicell, multicell) of fusion [19].
 

Associations of Trichoderma with chemical compounds

 

Gene context of Trichoderma

  • A protein kinase-encoding gene, pkt1, from Trichoderma reesei, homologous to the yeast YPK1 and YPK2 (YKR2) genes [25].
  • Two genes involved in protein secretion, encoding the Rab protein YPT1/YPTA and the general fusion factor NSFI/NSFA, were characterized from two filamentous fungi, Trichoderma reesei and Aspergillus niger var. awamori [26].
  • The effects of HAC1 deletion and overexpression on the production of a native protein, invertase, and two foreign proteins, Bacillus amyloliquefaciens alpha-amylase and Trichoderma reesei endoglucanase EGI, were studied [27].
  • We isolated a fungal strain producing Pdr5p inhibitors using our original assay system, and it was classified as Trichoderma sp. P24-3 [28].
  • Cloning and characterisation of genes (pkc1 and pkcA) encoding protein kinase C homologues from Trichoderma reesei and Aspergillus niger [29].
 

Analytical, diagnostic and therapeutic context of Trichoderma

References

  1. Different inducibility of expression of the two xylanase genes xyn1 and xyn2 in Trichoderma reesei. Zeilinger, S., Mach, R.L., Schindler, M., Herzog, P., Kubicek, C.P. J. Biol. Chem. (1996) [Pubmed]
  2. Raffinose-induced mutanase production from Trichoderma harzianum. Quivey, R.G., Kriger, P.S. FEMS Microbiol. Lett. (1993) [Pubmed]
  3. Affinity chromatography of proteolytic enzymes on silica-based biospecific sorbents. Stepanov, V.M., Rudenskaya, G.N., Gaida, A.V., Osterman, A.L. J. Biochem. Biophys. Methods (1981) [Pubmed]
  4. Enhanced enzymatic hydrolysis of langostino shell chitin with mixtures of enzymes from bacterial and fungal sources. Donzelli, B.G., Ostroff, G., Harman, G.E. Carbohydr. Res. (2003) [Pubmed]
  5. Endoxylanases in durum wheat semolina processing: solubilization of arabinoxylans, action of endogenous inhibitors, and effects on rheological properties. Ingelbrecht, J.A., Verwimp, T., Delcour, J.A. J. Agric. Food Chem. (2000) [Pubmed]
  6. Three-dimensional structure of cellobiohydrolase II from Trichoderma reesei. Rouvinen, J., Bergfors, T., Teeri, T., Knowles, J.K., Jones, T.A. Science (1990) [Pubmed]
  7. Unexpected homology between inducible cell wall protein QID74 of filamentous fungi and BR3 salivary protein of the insect Chironomus. Rey, M., Ohno, S., Pintor-Toro, J.A., Llobell, A., Benitez, T. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  8. Genes from mycoparasitic fungi as a source for improving plant resistance to fungal pathogens. Lorito, M., Woo, S.L., Garcia, I., Colucci, G., Harman, G.E., Pintor-Toro, J.A., Filippone, E., Muccifora, S., Lawrence, C.B., Zoina, A., Tuzun, S., Scala, F., Fernandez, I.G. Proc. Natl. Acad. Sci. U.S.A. (1998) [Pubmed]
  9. The cellulose-binding domain of the major cellobiohydrolase of Trichoderma reesei exhibits true reversibility and a high exchange rate on crystalline cellulose. Linder, M., Teeri, T.T. Proc. Natl. Acad. Sci. U.S.A. (1996) [Pubmed]
  10. The effects of drugs inhibiting protein secretion in the filamentous fungus Trichoderma reesei. Evidence for down-regulation of genes that encode secreted proteins in the stressed cells. Pakula, T.M., Laxell, M., Huuskonen, A., Uusitalo, J., Saloheimo, M., Penttilä, M. J. Biol. Chem. (2003) [Pubmed]
  11. Rapid blue light regulation of a Trichoderma harzianum photolyase gene. Berrocal-Tito, G., Sametz-Baron, L., Eichenberg, K., Horwitz, B.A., Herrera-Estrella, A. J. Biol. Chem. (1999) [Pubmed]
  12. Fungal cellulase systems. Comparison of the specificities of the cellobiohydrolases isolated from Penicillium pinophilum and Trichoderma reesei. Claeyssens, M., Van Tilbeurgh, H., Tomme, P., Wood, T.M., McRae, S.I. Biochem. J. (1989) [Pubmed]
  13. Production of Trichoderma reesei cellulases on glucose-containing media. Nakari-Setälä, T., Penttilä, M. Appl. Environ. Microbiol. (1995) [Pubmed]
  14. Mycotoxigenic Fusarium and deoxynivalenol production repress chitinase gene expression in the biocontrol agent Trichoderma atroviride P1. Lutz, M.P., Feichtinger, G., Défago, G., Duffy, B. Appl. Environ. Microbiol. (2003) [Pubmed]
  15. Identification of an essential glutamate residue in the active site of endoglucanase III from Trichoderma reesei. Macarron, R., van Beeumen, J., Henrissat, B., de la Mata, I., Claeyssens, M. FEBS Lett. (1993) [Pubmed]
  16. Trichoderma reesei alpha-1,2-mannosidase: structural basis for the cleavage of four consecutive mannose residues. Van Petegem, F., Contreras, H., Contreras, R., Van Beeumen, J. J. Mol. Biol. (2001) [Pubmed]
  17. Light-stimulated phosphorylation of proteins in cell-free extracts from Trichoderma viride. Gresík, M., Kolarova, N., Farkas, V. FEBS Lett. (1989) [Pubmed]
  18. Isolation of DNA from yeasts. Mann, W., Jeffery, J. Anal. Biochem. (1989) [Pubmed]
  19. Fluorescent vital stains for complementary labelling of protoplasts from Trichoderma spp. Harman, G.E., Stasz, T.E. Stain technology. (1988) [Pubmed]
  20. A new antitumor enzyme, L-lysine alpha-oxidase from Trichoderma viride. Purification and enzymological properties. Kusakabe, H., Kodama, K., Kuninaka, A., Yoshino, H., Misono, H., Soda, K. J. Biol. Chem. (1980) [Pubmed]
  21. The bgl1 gene of Trichoderma reesei QM 9414 encodes an extracellular, cellulose-inducible beta-glucosidase involved in cellulase induction by sophorose. Mach, R.L., Seiboth, B., Myasnikov, A., Gonzalez, R., Strauss, J., Harkki, A.M., Kubicek, C.P. Mol. Microbiol. (1995) [Pubmed]
  22. A novel, small endoglucanase gene, egl5, from Trichoderma reesei isolated by expression in yeast. Saloheimo, A., Henrissat, B., Hoffrén, A.M., Teleman, O., Penttilä, M. Mol. Microbiol. (1994) [Pubmed]
  23. Structure of Alamethicin in solution. One- and two-dimensional 1H nuclear magnetic resonance studies at 500 MHz. Banerjee, U., Tsui, F.P., Balasubramanian, T.N., Marshall, G.R., Chan, S.I. J. Mol. Biol. (1983) [Pubmed]
  24. Salicylic acid and ethylene pathways are differentially activated in melon cotyledons by active or heat-denatured cellulase from Trichoderma longibrachiatum. Martinez, C., Blanc, F., Le Claire, E., Besnard, O., Nicole, M., Baccou, J.C. Plant Physiol. (2001) [Pubmed]
  25. A protein kinase-encoding gene, pkt1, from Trichoderma reesei, homologous to the yeast YPK1 and YPK2 (YKR2) genes. Morawetz, R., Mischak, H., Goodnight, J., Lendenfeld, T., Mushinsky, J.F., Kubicek, C.P. Gene (1994) [Pubmed]
  26. Characterization of secretory genes ypt1/yptA and nsf1/nsfA from two filamentous fungi: induction of secretory pathway genes of Trichoderma reesei under secretion stress conditions. Saloheimo, M., Wang, H., Valkonen, M., Vasara, T., Huuskonen, A., Riikonen, M., Pakula, T., Ward, M., Penttilä, M. Appl. Environ. Microbiol. (2004) [Pubmed]
  27. Effects of inactivation and constitutive expression of the unfolded- protein response pathway on protein production in the yeast Saccharomyces cerevisiae. Valkonen, M., Penttilä, M., Saloheimo, M. Appl. Environ. Microbiol. (2003) [Pubmed]
  28. A new function of isonitrile as an inhibitor of the Pdr5p multidrug ABC transporter in Saccharomyces cerevisiae. Yamamoto, S., Hiraga, K., Abiko, A., Hamanaka, N., Oda, K. Biochem. Biophys. Res. Commun. (2005) [Pubmed]
  29. Cloning and characterisation of genes (pkc1 and pkcA) encoding protein kinase C homologues from Trichoderma reesei and Aspergillus niger. Morawetz, R., Lendenfeld, T., Mischak, H., Mühlbauer, M., Gruber, F., Goodnight, J., de Graaff, L.H., Visser, J., Mushinski, J.F., Kubicek, C.P. Mol. Gen. Genet. (1996) [Pubmed]
  30. Pseudomonas lipodepsipeptides and fungal cell wall-degrading enzymes act synergistically in biological control. Fogliano, V., Ballio, A., Gallo, M., Woo, S., Scala, F., Lorito, M. Mol. Plant Microbe Interact. (2002) [Pubmed]
  31. Discrimination between enantioselective and non-selective binding sites on cellobiohydrolase-based stationary phases by site specific competing ligands. Henriksson, H., Pettersson, G., Johansson, G. Journal of chromatography. A. (1999) [Pubmed]
  32. Maturation of barley cysteine endopeptidase expressed in Trichoderma reesei is distorted by incomplete processing. Nykänen, M.J., Raudaskoski, M., Nevalainen, H., Mikkonen, A. Can. J. Microbiol. (2002) [Pubmed]
  33. Molecular cloning, characterization, and expression studies of a novel chitinase gene (ech30) from the mycoparasite Trichoderma atroviride strain P1. Klemsdal, S.S., Clarke, J.L., Hoell, I.A., Eijsink, V.G., Brurberg, M.B. FEMS Microbiol. Lett. (2006) [Pubmed]
  34. Production and biotransformation of 6-pentyl-alpha-pyrone by Trichoderma harzianum in two-phase culture systems. Serrano-Carreón, L., Balderas-Ruíz, K., Galindo, E., Rito-Palomares, M. Appl. Microbiol. Biotechnol. (2002) [Pubmed]
 
WikiGenes - Universities