Tumor-selective transgene expression in vivo mediated by an E2F-responsive adenoviral vector.
Recent data suggest that many tumors, such as malignant gliomas, have disrupted pRB function, either because of RB-1 gene mutations or as a result of mutations affecting upstream regulators of pRB such as cyclin D1 or p16/INK4a/MTS1 (ref. 1-5). Tumor suppression by pRB has been linked to its ability to repress E2F-responsive promoters such as the E2F-1 promoter. Thus, a prediction, which has not yet been demonstrated experimentally in vivo, is that E2F-responsive promoters should be more active in tumor cells relative to normal cells because of an excess of "free" E2F and loss of pRB/ E2F repressor complexes. We demonstrate that adenoviral vectors that contain transgenes driven by the E2F-1 promoter can mediate tumor-selective gene expression in vivo, allowing for eradication of established gliomas with significantly less normal tissue toxicity than seen with standard adenoviral vectors. Our data indicate that de-repression of the E2F-1 promoter occurs in cancer cells in vivo, a finding that can be exploited to design viral vectors that mediate tumor-selective gene expression.[1]References
- Tumor-selective transgene expression in vivo mediated by an E2F-responsive adenoviral vector. Parr, M.J., Manome, Y., Tanaka, T., Wen, P., Kufe, D.W., Kaelin, W.G., Fine, H.A. Nat. Med. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg