The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Glioma


Psychiatry related information on Glioma


High impact information on Glioma


Chemical compound and disease context of Glioma


Biological context of Glioma


Anatomical context of Glioma


Gene context of Glioma

  • We demonstrate that expression of a constitutively active, mutant form of EGFR in cells in the glial lineage can induce lesions with many similarities to human gliomas [32].
  • None of the human malignant glioma cell lines was susceptible to TNF alpha-induced cytotoxicity [33].
  • In order to achieve specific targeting of the IL13R in gliomas, we have mutagenized human (h) IL13 [34].
  • Introduction of wild-type PTEN into glioma cells containing endogenous mutant alleles caused growth suppression, but was without effect in cells containing endogenous wild-type PTEN [35].
  • The genes for platelet-derived growth factor (PDGF) A chain, B chain/c-sis, and the PDGF receptor are expressed in human malignant glioma cell lines [36].
  • The epigenetic regulation of the PDGF-B gene dictates whether TGFbeta acts as an oncogenic factor inducing PDGF-B and proliferation in human glioma [37].
  • Glycerol and sodium 4-phenylbutyrate reduced the amount of Hsc70 expressed in glioma cells to levels found in normal astrocytes [38].
  • We found that, in the single-locus analysis, glioma risk was statistically significantly associated with three XRCC5 tSNPs (SNP1 rs828704, SNP6 rs3770502 and SNP7 rs9288516, P = 0.005, 0.042 and 0.003, respectively), one XRCC6 tSNP (SNP4 rs6519265, P = 0.044) but none of XPCC7 tSNPs [39].
  • We further show that transforming growth factor-beta (TGF-beta) up-regulates the expression of LLT1 in glioma cells [40].
  • Exogenous expression of ELMO1 and Dock180 in glioma cells with low level endogenous expression increased their migratory and invasive capacity in vitro and in brain tissue [41].
  • Ntv-a mice were injected with RCAS vectors to express PDGF-B + Bcl-2, resulting in both low- and high-grade gliomas [42].

Analytical, diagnostic and therapeutic context of Glioma


  1. Prediction of BCNU pulmonary toxicity in patients with malignant gliomas: an assessment of risk factors. Aronin, P.A., Mahaley, M.S., Rudnick, S.A., Dudka, L., Donohue, J.F., Selker, R.G., Moore, P. N. Engl. J. Med. (1980) [Pubmed]
  2. A mouse model for the learning and memory deficits associated with neurofibromatosis type I. Silva, A.J., Frankland, P.W., Marowitz, Z., Friedman, E., Laszlo, G.S., Cioffi, D., Jacks, T., Bourtchuladze, R., Lazlo, G. Nat. Genet. (1997) [Pubmed]
  3. Chronic brain inflammation and persistent herpes simplex virus 1 thymidine kinase expression in survivors of syngeneic glioma treated by adenovirus-mediated gene therapy: implications for clinical trials. Dewey, R.A., Morrissey, G., Cowsill, C.M., Stone, D., Bolognani, F., Dodd, N.J., Southgate, T.D., Klatzmann, D., Lassmann, H., Castro, M.G., Löwenstein, P.R. Nat. Med. (1999) [Pubmed]
  4. Cellular interactions uncouple beta-adrenergic receptors from adenylate cyclase. Ciment, G., de Vellis, J. Science (1978) [Pubmed]
  5. Insights into glutamate transport regulation in human astrocytes: cloning of the promoter for excitatory amino acid transporter 2 (EAAT2). Su, Z.Z., Leszczyniecka, M., Kang, D.C., Sarkar, D., Chao, W., Volsky, D.J., Fisher, P.B. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  6. Possible functions of a new genetic marker in central nervous system: the sulfated glycoprotein-2 (SGP-2). Michel, D., Chabot, J.G., Moyse, E., Danik, M., Quirion, R. Synapse (1992) [Pubmed]
  7. Episodic nocturnal wandering in a patient with epilepsy due to a right temporoinsular low-grade glioma: relief following resection. Case report. Duffau, H., Kujas, M., Taillandier, L. J. Neurosurg. (2006) [Pubmed]
  8. Proliferation index as a predictor of prognosis in malignant gliomas of childhood. Pollack, I.F., Campbell, J.W., Hamilton, R.L., Martinez, A.J., Bozik, M.E. Cancer (1997) [Pubmed]
  9. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. Esteller, M., Garcia-Foncillas, J., Andion, E., Goodman, S.N., Hidalgo, O.F., Vanaclocha, V., Baylin, S.B., Herman, J.G. N. Engl. J. Med. (2000) [Pubmed]
  10. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Holland, E.C., Celestino, J., Dai, C., Schaefer, L., Sawaya, R.E., Fuller, G.N. Nat. Genet. (2000) [Pubmed]
  11. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. Walker, M.D., Green, S.B., Byar, D.P., Alexander, E., Batzdorf, U., Brooks, W.H., Hunt, W.E., MacCarty, C.S., Mahaley, M.S., Mealey, J., Owens, G., Ransohoff, J., Robertson, J.T., Shapiro, W.R., Smith, K.R., Wilson, C.B., Strike, T.A. N. Engl. J. Med. (1980) [Pubmed]
  12. Noradrealine induces morphological alterations in nucleated and enucleated rat C6 glioma cells. Oey, J. Nature (1975) [Pubmed]
  13. Glutamate release promotes growth of malignant gliomas. Takano, T., Lin, J.H., Arcuino, G., Gao, Q., Yang, J., Nedergaard, M. Nat. Med. (2001) [Pubmed]
  14. External cyclic AMP-dependent protein kinase activity in rat C-6 glioma cells. Schlaeger, E., Köhler, G. Nature (1976) [Pubmed]
  15. Muscarinic response to acetylcholine in neuroblastoma times glioma hybrid cells. Traber, J., Fischer, K., Buchen, C., Hamprecht, B. Nature (1975) [Pubmed]
  16. Morphine elevates levels of cyclic GMP in a neuroblastoma X glioma hybrid cell line. Gullis, R., Traber, J., Hamprecht, B. Nature (1975) [Pubmed]
  17. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Vredenburgh, J.J., Desjardins, A., Herndon, J.E., Dowell, J.M., Reardon, D.A., Quinn, J.A., Rich, J.N., Sathornsumetee, S., Gururangan, S., Wagner, M., Bigner, D.D., Friedman, A.H., Friedman, H.S. Clin. Cancer Res. (2007) [Pubmed]
  18. Increased glioma growth in mice depleted of macrophages. Galarneau, H., Villeneuve, J., Gowing, G., Julien, J.P., Vallières, L. Cancer Res. (2007) [Pubmed]
  19. A novel inhibitor of the STAT3 pathway induces apoptosis in malignant glioma cells both in vitro and in vivo. Iwamaru, A., Szymanski, S., Iwado, E., Aoki, H., Yokoyama, T., Fokt, I., Hess, K., Conrad, C., Madden, T., Sawaya, R., Kondo, S., Priebe, W., Kondo, Y. Oncogene (2007) [Pubmed]
  20. Magnetic resonance imaging determination of tumor grade and early response to temozolomide in a genetically engineered mouse model of glioma. McConville, P., Hambardzumyan, D., Moody, J.B., Leopold, W.R., Kreger, A.R., Woolliscroft, M.J., Rehemtulla, A., Ross, B.D., Holland, E.C. Clin. Cancer Res. (2007) [Pubmed]
  21. Sodium selenite induces superoxide-mediated mitochondrial damage and subsequent autophagic cell death in malignant glioma cells. Kim, E.H., Sohn, S., Kwon, H.J., Kim, S.U., Kim, M.J., Lee, S.J., Choi, K.S. Cancer Res. (2007) [Pubmed]
  22. DNA demethylating agents synergize with oncolytic HSV1 against malignant gliomas. Okemoto, K., Kasai, K., Wagner, B., Haseley, A., Meisen, H., Bolyard, C., Mo, X., Wehr, A., Lehman, A., Fernandez, S., Kaur, B., Chiocca, E.A. Clin. Cancer Res. (2013) [Pubmed]
  23. Overexpression of E2F-1 in glioma triggers apoptosis and suppresses tumor growth in vitro and in vivo. Fueyo, J., Gomez-Manzano, C., Yung, W.K., Liu, T.J., Alemany, R., McDonnell, T.J., Shi, X., Rao, J.S., Levin, V.A., Kyritsis, A.P. Nat. Med. (1998) [Pubmed]
  24. Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Dobrowsky, R.T., Werner, M.H., Castellino, A.M., Chao, M.V., Hannun, Y.A. Science (1994) [Pubmed]
  25. PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo. Dai, C., Celestino, J.C., Okada, Y., Louis, D.N., Fuller, G.N., Holland, E.C. Genes Dev. (2001) [Pubmed]
  26. Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors. Chenevert, T.L., Stegman, L.D., Taylor, J.M., Robertson, P.L., Greenberg, H.S., Rehemtulla, A., Ross, B.D. J. Natl. Cancer Inst. (2000) [Pubmed]
  27. Inhibition of tumor growth by ribozyme-mediated suppression of aberrant epidermal growth factor receptor gene expression. Yamazaki, H., Kijima, H., Ohnishi, Y., Abe, Y., Oshika, Y., Tsuchida, T., Tokunaga, T., Tsugu, A., Ueyama, Y., Tamaoki, N., Nakamura, M. J. Natl. Cancer Inst. (1998) [Pubmed]
  28. Subpopulations of cultured chick sympathetic neurones differ in their requirements for survival factors. Edgar, D., Barde, Y.A., Thoenen, H. Nature (1981) [Pubmed]
  29. Effects of sodium warfarin and sodium heparin plus anticancer agents on growth of rat C6 glioma cells. McNiel, N.O., Morgan, L.R. J. Natl. Cancer Inst. (1984) [Pubmed]
  30. Quantitative study of monocyte chemoattractant protein-1 (MCP-1) in cerebrospinal fluid and cyst fluid from patients with malignant glioma. Kuratsu, J., Yoshizato, K., Yoshimura, T., Leonard, E.J., Takeshima, H., Ushio, Y. J. Natl. Cancer Inst. (1993) [Pubmed]
  31. Role of interleukin-2 (IL-2) and IL-2 receptor expression in the proliferative defect observed in mitogen-stimulated lymphocytes from patients with gliomas. Elliott, L., Brooks, W., Roszman, T. J. Natl. Cancer Inst. (1987) [Pubmed]
  32. A constitutively active epidermal growth factor receptor cooperates with disruption of G1 cell-cycle arrest pathways to induce glioma-like lesions in mice. Holland, E.C., Hively, W.P., DePinho, R.A., Varmus, H.E. Genes Dev. (1998) [Pubmed]
  33. Anti-Fas/APO-1 antibody-mediated apoptosis of cultured human glioma cells. Induction and modulation of sensitivity by cytokines. Weller, M., Frei, K., Groscurth, P., Krammer, P.H., Yonekawa, Y., Fontana, A. J. Clin. Invest. (1994) [Pubmed]
  34. Novel anti-brain tumor cytotoxins specific for cancer cells. Debinski, W., Gibo, D.M., Obiri, N.I., Kealiher, A., Puri, R.K. Nat. Biotechnol. (1998) [Pubmed]
  35. Growth suppression of glioma cells by PTEN requires a functional phosphatase catalytic domain. Furnari, F.B., Lin, H., Huang, H.S., Cavenee, W.K. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  36. Endothelial cell hyperplasia in human glioblastoma: coexpression of mRNA for platelet-derived growth factor (PDGF) B chain and PDGF receptor suggests autocrine growth stimulation. Hermansson, M., Nistér, M., Betsholtz, C., Heldin, C.H., Westermark, B., Funa, K. Proc. Natl. Acad. Sci. U.S.A. (1988) [Pubmed]
  37. High TGFbeta-Smad activity confers poor prognosis in glioma patients and promotes cell proliferation depending on the methylation of the PDGF-B gene. Bruna, A., Darken, R.S., Rojo, F., Ocaña, A., Peñuelas, S., Arias, A., Paris, R., Tortosa, A., Mora, J., Baselga, J., Seoane, J. Cancer. Cell (2007) [Pubmed]
  38. Participation of the chaperone Hsc70 in the trafficking and functional expression of ASIC2 in glioma cells. Vila-Carriles, W.H., Zhou, Z.H., Bubien, J.K., Fuller, C.M., Benos, D.J. J. Biol. Chem. (2007) [Pubmed]
  39. Tagging SNPs in non-homologous end-joining pathway genes and risk of glioma. Liu, Y., Zhang, H., Zhou, K., Chen, L., Xu, Z., Zhong, Y., Liu, H., Li, R., Shugart, Y.Y., Wei, Q., Jin, L., Huang, F., Lu, D., Zhou, L. Carcinogenesis (2007) [Pubmed]
  40. Malignant glioma cells counteract antitumor immune responses through expression of lectin-like transcript-1. Roth, P., Mittelbronn, M., Wick, W., Meyermann, R., Tatagiba, M., Weller, M. Cancer Res. (2007) [Pubmed]
  41. ELMO1 and Dock180, a bipartite Rac1 guanine nucleotide exchange factor, promote human glioma cell invasion. Jarzynka, M.J., Hu, B., Hui, K.M., Bar-Joseph, I., Gu, W., Hirose, T., Haney, L.B., Ravichandran, K.S., Nishikawa, R., Cheng, S.Y. Cancer Res. (2007) [Pubmed]
  42. Intratumoral mediated immunosuppression is prognostic in genetically engineered murine models of glioma and correlates to immunotherapeutic responses. Kong, L.Y., Wu, A.S., Doucette, T., Wei, J., Priebe, W., Fuller, G.N., Qiao, W., Sawaya, R., Rao, G., Heimberger, A.B. Clin. Cancer Res. (2010) [Pubmed]
  43. Smac agonists sensitize for Apo2L/TRAIL- or anticancer drug-induced apoptosis and induce regression of malignant glioma in vivo. Fulda, S., Wick, W., Weller, M., Debatin, K.M. Nat. Med. (2002) [Pubmed]
  44. Evaluating glioma therapies: modeling treatments and predicting outcomes. Kirby, S., Brothers, M., Irish, W., Florell, R., Macdonald, D., Schold, C., Cairncross, G. J. Natl. Cancer Inst. (1995) [Pubmed]
  45. Cell cycle changes in the adenylate cyclase of C6 glioma cells. Howard, R.F., Sheppard, J.R. J. Cell Biol. (1981) [Pubmed]
  46. Glypican and biglycan in the nuclei of neurons and glioma cells: presence of functional nuclear localization signals and dynamic changes in glypican during the cell cycle. Liang, Y., Häring, M., Roughley, P.J., Margolis, R.K., Margolis, R.U. J. Cell Biol. (1997) [Pubmed]
  47. Selective expression of the large neutral amino acid transporter at the blood-brain barrier. Boado, R.J., Li, J.Y., Nagaya, M., Zhang, C., Pardridge, W.M. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
WikiGenes - Universities