The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Purification and characterization of naturally soluble neuropathy target esterase from chicken sciatic nerve by HPLC and western blot.

Neuropathy target esterase ( NTE) activity is defined operatively as the paraoxon-resistant mipafox-sensitive phenyl valerate esterase activity. A preparation containing a soluble isoform (S-NTE2) has been obtained from sciatic nerve. It was inhibited by the biotinylated organophosphorous ester S9B [1-(saligenin cyclic phospho)-9-biotinyldiaminononane] in a progressive manner showing a second-order rate constant of (3.50 +/- 0.26) x 10(6) M(-1) x min(-1) with an I50 for 30 min of 6.6 +/- 0.4 nM. S-NTE2 was enriched 218-fold by gel filtration followed by strong and weak anion-exchange chromatographies in HPLC. In western blots, this enriched sample showed two bands of endogenous biotinylated polypeptides after treating the blots with streptavidin-alkaline phosphatase complex. When the sample was treated with S9B, another biotinylated band was observed with a molecular mass of approximately 56 kDa, which was not seen when the sample had been pretreated with mipafox before the S9B labeling. It was deduced that this band represents a polypeptide (identified as the S-NTE2 protein) that is bound by both mipafox and S9B and that should be responsible for the progressive S9B inhibition. It is possible that S-NTE2 is the target for attack by compounds that promote delayed neuropathy.[1]

References

 
WikiGenes - Universities