The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Immunocytochemical diagnosis of acute promyelocytic leukemia (M3) with the monoclonal antibody PG-M3 (anti- PML).

Acute promyelocytic leukemia (APL) is characterized by a reciprocal 15; 17 chromosomal translocation, which fuses the promyelocytic leukemia ( PML) and retinoic acid receptor alpha (RARalpha) genes, leading to the expression of the PML/RARalpha fusion oncoprotein. Immunocytochemical labeling of the wild-type PML protein with the PG-M3 monoclonal antibody (MoAb) directed against the amino terminal portion of the human PML gene product, produces a characteristic nuclear speckled pattern that is due to localization of the protein into discrete dots (5 to 20 per nucleus), named PML nuclear bodies. The architecture of PML nuclear bodies appears to be disrupted in APL cells that bear the t(15; 17), thus resulting in a change of the nuclear staining pattern from speckled (wild-type PML protein) to microgranular (PML-RARalpha fusion protein). To assess whether the PG-M3 MoAb could assist in the diagnosis of APL (M3), bone marrow and/or peripheral blood samples from 100 cases of acute nonlymphoid leukemias of different subtypes were blindly immunostained with the PG-M3 MoAb, using the immunoalkaline phosphatase (APAAP) or immunofluorescence technique as detection system. Notably, the abnormal (micropunctate) pattern of the PML/RARalpha fusion protein (usually >/=50 small granules/per nucleus) was observed in APL (M3) samples, but not in other types of acute nonlymphoid leukemias. Immunocytochemical labeling with PG-M3 was particularly useful in the diagnosis of microgranular variant of APL (M3V) (three cases misdiagnosed as M4 and M5), and also to exclude a morphologic misdiagnosis of APL (six of 78 cases). In all cases investigated, immunocytochemical results were in agreement with those of reverse transcription-polymerase chain reaction (RT-PCR) for PML/RARalpha. Because the epitope identified by PG-M3 is located in the aminoterminal portion of PML (AA 37 to 51), the antibody was suitable for recognizing APL cases characterized by breakpoint occurring at different sites of PML (bcr 1, bcr 2 and bcr 3). In conclusion, immunocytochemical labeling with PG-M3 represents a rapid, sensitive, and highly-specific test for the diagnosis of APL that bears the t(15; 17). This should allow an easy and correct diagnosis of this subtype of acute leukemia to any laboratory provided with a minimal equipment for immunocytochemistry work.[1]

References

  1. Immunocytochemical diagnosis of acute promyelocytic leukemia (M3) with the monoclonal antibody PG-M3 (anti-PML). Falini, B., Flenghi, L., Fagioli, M., Lo Coco, F., Cordone, I., Diverio, D., Pasqualucci, L., Biondi, A., Riganelli, D., Orleth, A., Liso, A., Martelli, M.F., Pelicci, P.G., Pileri, S. Blood (1997) [Pubmed]
 
WikiGenes - Universities