The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Leukemia

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Leukemia

 

Psychiatry related information on Leukemia

  • We show that in primary spontaneous AKR leukemias, in spite of large individual differences, the expression of high amounts of MuLV gp70 is not random, but is associated with high expression of H-2K and H-2D antigens [6].
 

High impact information on Leukemia

  • METHODS: We studied a newly described receptor for fibrinolytic proteins, annexin II, in cells from patients with APL or other leukemias [7].
  • Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias [8].
  • These data suggest a novel role for a trithorax-homologous protein in multilineage human leukemias that may be mediated by DNA binding within the minor groove at AT-rich sites, implicated to play an important role in bacterial IHF-, yeast datin-, and mammalian HMG-mediated gene activation [8].
  • BCR-ABL is a chimeric oncogene implicated in the pathogenesis of Philadelphia chromosome-positive human leukemias [9].
  • Repression of p14(ARF) may explain why p53 is not mutated in t(8;21)-containing leukemias and suggests that p14(ARF) is an important tumor suppressor in a large number of human leukemias [10].
 

Chemical compound and disease context of Leukemia

  • Cytosine arabinoside transport and metabolism in acute leukemias and T cell lymphoblastic lymphoma [11].
  • Of 10,000 NHL patients treated for 6 months with selected regimens including low cumulative doses of cyclophosphamide and followed for 10 years, an excess of four leukemias might be expected [12].
  • Sensitivities to m-AMSA did not differ significantly between normal marrow and blood CFC, between normal and CML CFC, or between CML CFC obtained from patients with leukemias in chronic phase and blast transformation [13].
  • The cytotoxic effect of 5-fluorouracil (FUra) given as a 24-hour infusion against both AKR and L1210 leukemias was quantitated by spleen colony assays [14].
  • Understanding the molecular basis of these differences in the effects of As2O3 and retinoic acid may guide the clinical use of arsenic compounds and provide insights into the management of leukemias that do not respond to retinoic acid [15].
 

Biological context of Leukemia

 

Anatomical context of Leukemia

 

Gene context of Leukemia

  • The results of this study may have implications for clinical therapy for acute or chronic leukemias expressing the mdr1 or mdr3 gene, in particular, treatment with combinations of cytotoxic drugs plus agents that reverse multidrug resistance [20].
  • Xenotransplantation of primary leukemias and leukemic cell lines into immunocompromised nonobese diabetic mice resulted in significant elevation of human, but not murine, VEGF in plasma and death of inoculated mice within 3 weeks [26].
  • The recent development of murine models of core-binding factor leukemias has provided important insights into the underlying molecular pathology of this common subtype of acute myeloid leukemia [27].
  • Recent reports have demonstrated fusion of the TEL gene on 12p13 to the JAK2 gene on 9p24 in human leukemias [28].
  • LMO2 is essential for hemopoiesis and angiogenesis, and inappropriate overexpression of this protein leads to T-cell leukemias [29].
 

Analytical, diagnostic and therapeutic context of Leukemia

References

  1. T-cell glucocorticoid receptor is required to suppress COX-2-mediated lethal immune activation. Brewer, J.A., Khor, B., Vogt, S.K., Muglia, L.M., Fujiwara, H., Haegele, K.E., Sleckman, B.P., Muglia, L.J. Nat. Med. (2003) [Pubmed]
  2. Relationship between the c-myb locus and the 6q-chromosomal aberration in leukemias and lymphomas. Barletta, C., Pelicci, P.G., Kenyon, L.C., Smith, S.D., Dalla-Favera, R. Science (1987) [Pubmed]
  3. Association of the protein kinases c-Bcr and Bcr-Abl with proteins of the 14-3-3 family. Reuther, G.W., Fu, H., Cripe, L.D., Collier, R.J., Pendergast, A.M. Science (1994) [Pubmed]
  4. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Souza, L.M., Boone, T.C., Gabrilove, J., Lai, P.H., Zsebo, K.M., Murdock, D.C., Chazin, V.R., Bruszewski, J., Lu, H., Chen, K.K. Science (1986) [Pubmed]
  5. Predominance of fetal type DJH joining in young children with B precursor lymphoblastic leukemia as evidence for an in utero transforming event. Wasserman, R., Galili, N., Ito, Y., Reichard, B.A., Shane, S., Rovera, G. J. Exp. Med. (1992) [Pubmed]
  6. Correlation between quantitative expression of H-2K, H-2D and MuLV antigens on spontaneous AKR lymphomas. Oudshoorn-Snoek, M., Demant, P. Int. J. Cancer (1986) [Pubmed]
  7. Annexin II and bleeding in acute promyelocytic leukemia. Menell, J.S., Cesarman, G.M., Jacovina, A.T., McLaughlin, M.A., Lev, E.A., Hajjar, K.A. N. Engl. J. Med. (1999) [Pubmed]
  8. Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Tkachuk, D.C., Kohler, S., Cleary, M.L. Cell (1992) [Pubmed]
  9. BCR sequences essential for transformation by the BCR-ABL oncogene bind to the ABL SH2 regulatory domain in a non-phosphotyrosine-dependent manner. Pendergast, A.M., Muller, A.J., Havlik, M.H., Maru, Y., Witte, O.N. Cell (1991) [Pubmed]
  10. The t(8;21) fusion protein, AML1 ETO, specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia. Linggi, B., Müller-Tidow, C., van de Locht, L., Hu, M., Nip, J., Serve, H., Berdel, W.E., van der Reijden, B., Quelle, D.E., Rowley, J.D., Cleveland, J., Jansen, J.H., Pandolfi, P.P., Hiebert, S.W. Nat. Med. (2002) [Pubmed]
  11. Cytosine arabinoside transport and metabolism in acute leukemias and T cell lymphoblastic lymphoma. Wiley, J.S., Taupin, J., Jamieson, G.P., Snook, M., Sawyer, W.H., Finch, L.R. J. Clin. Invest. (1985) [Pubmed]
  12. Risk of leukemia following treatment for non-Hodgkin's lymphoma. Travis, L.B., Curtis, R.E., Stovall, M., Holowaty, E.J., van Leeuwen, F.E., Glimelius, B., Lynch, C.F., Hagenbeek, A., Li, C.Y., Banks, P.M. J. Natl. Cancer Inst. (1994) [Pubmed]
  13. Chemotherapeutic sensitivity of normal and leukemic hematopoietic progenitor cells to N-[4-(9-acridinylamino)-3-methoxyphenyl]-methanesulfonamide, a new anticancer agent. Spiro, T.E., Socquet, M., Delforge, A., Stryckmans, P. J. Natl. Cancer Inst. (1981) [Pubmed]
  14. Schedule-dependent cytotoxicity of 5-fluorouracil in mice. Santelli, G., Valeriote, F. J. Natl. Cancer Inst. (1986) [Pubmed]
  15. Arsenic trioxide as an inducer of apoptosis and loss of PML/RAR alpha protein in acute promyelocytic leukemia cells. Shao, W., Fanelli, M., Ferrara, F.F., Riccioni, R., Rosenauer, A., Davison, K., Lamph, W.W., Waxman, S., Pelicci, P.G., Lo Coco, F., Avvisati, G., Testa, U., Peschle, C., Gambacorti-Passerini, C., Nervi, C., Miller, W.H. J. Natl. Cancer Inst. (1998) [Pubmed]
  16. Deregulation of c-myc by translocation of the alpha-locus of the T-cell receptor in T-cell leukemias. Erikson, J., Finger, L., Sun, L., ar-Rushdi, A., Nishikura, K., Minowada, J., Finan, J., Emanuel, B.S., Nowell, P.C., Croce, C.M. Science (1986) [Pubmed]
  17. Exclusive development of T cell neoplasms in mice transplanted with bone marrow expressing activated Notch alleles. Pear, W.S., Aster, J.C., Scott, M.L., Hasserjian, R.P., Soffer, B., Sklar, J., Baltimore, D. J. Exp. Med. (1996) [Pubmed]
  18. Susceptibility of nonpromoter CpG islands to de novo methylation in normal and neoplastic cells. Nguyen, C., Liang, G., Nguyen, T.T., Tsao-Wei, D., Groshen, S., Lübbert, M., Zhou, J.H., Benedict, W.F., Jones, P.A. J. Natl. Cancer Inst. (2001) [Pubmed]
  19. B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues. Frank, D.A., Mahajan, S., Ritz, J. J. Clin. Invest. (1997) [Pubmed]
  20. Expression of mdr1 and mdr3 multidrug-resistance genes in human acute and chronic leukemias and association with stimulation of drug accumulation by cyclosporine. Herweijer, H., Sonneveld, P., Baas, F., Nooter, K. J. Natl. Cancer Inst. (1990) [Pubmed]
  21. The gene for enhancer binding proteins E12/E47 lies at the t(1;19) breakpoint in acute leukemias. Mellentin, J.D., Murre, C., Donlon, T.A., McCaw, P.S., Smith, S.D., Carroll, A.J., McDonald, M.E., Baltimore, D., Cleary, M.L. Science (1989) [Pubmed]
  22. High incidence of proviral integrations in the Hoxa locus in a new model of E2a-PBX1-induced B-cell leukemia. Bijl, J., Sauvageau, M., Thompson, A., Sauvageau, G. Genes Dev. (2005) [Pubmed]
  23. Oncogenic Abl and Src tyrosine kinases elicit the ubiquitin-dependent degradation of target proteins through a Ras-independent pathway. Dai, Z., Quackenbush, R.C., Courtney, K.D., Grove, M., Cortez, D., Reuther, G.W., Pendergast, A.M. Genes Dev. (1998) [Pubmed]
  24. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Cozzio, A., Passegué, E., Ayton, P.M., Karsunky, H., Cleary, M.L., Weissman, I.L. Genes Dev. (2003) [Pubmed]
  25. Treatment of acute myeloid leukemia cells in vitro with a monoclonal antibody recognizing a myeloid differentiation antigen allows normal progenitor cells to be expressed. Bernstein, I.D., Singer, J.W., Andrews, R.G., Keating, A., Powell, J.S., Bjornson, B.H., Cuttner, J., Najfeld, V., Reaman, G., Raskind, W. J. Clin. Invest. (1987) [Pubmed]
  26. Autocrine stimulation of VEGFR-2 activates human leukemic cell growth and migration. Dias, S., Hattori, K., Zhu, Z., Heissig, B., Choy, M., Lane, W., Wu, Y., Chadburn, A., Hyjek, E., Gill, M., Hicklin, D.J., Witte, L., Moore, M.A., Rafii, S. J. Clin. Invest. (2000) [Pubmed]
  27. The core-binding factor leukemias: lessons learned from murine models. Downing, J.R. Curr. Opin. Genet. Dev. (2003) [Pubmed]
  28. Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo- and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. Schwaller, J., Frantsve, J., Aster, J., Williams, I.R., Tomasson, M.H., Ross, T.S., Peeters, P., Van Rompaey, L., Van Etten, R.A., Ilaria, R., Marynen, P., Gilliland, D.G. EMBO J. (1998) [Pubmed]
  29. Structural basis for the recognition of ldb1 by the N-terminal LIM domains of LMO2 and LMO4. Deane, J.E., Mackay, J.P., Kwan, A.H., Sum, E.Y., Visvader, J.E., Matthews, J.M. EMBO J. (2003) [Pubmed]
  30. The MLL fusion gene, MLL-AF4, regulates cyclin-dependent kinase inhibitor CDKN1B (p27kip1) expression. Xia, Z.B., Popovic, R., Chen, J., Theisler, C., Stuart, T., Santillan, D.A., Erfurth, F., Diaz, M.O., Zeleznik-Le, N.J. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  31. Panhandle PCR strategy to amplify MLL genomic breakpoints in treatment-related leukemias. Megonigal, M.D., Rappaport, E.F., Jones, D.H., Kim, C.S., Nowell, P.C., Lange, B.J., Felix, C.A. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  32. Cre/lox-regulated transgenic zebrafish model with conditional myc-induced T cell acute lymphoblastic leukemia. Langenau, D.M., Feng, H., Berghmans, S., Kanki, J.P., Kutok, J.L., Look, A.T. Proc. Natl. Acad. Sci. U.S.A. (2005) [Pubmed]
  33. Discrimination of human leukemia subtypes by flow cytometric analysis of cellular DNA and RNA. Andreeff, M., Darzynkiewicz, Z., Sharpless, T.K., Clarkson, B.D., Melamed, M.R. Blood (1980) [Pubmed]
  34. Homozygous loss of the cyclin-dependent kinase 4-inhibitor (p16) gene in human leukemias. Ogawa, S., Hirano, N., Sato, N., Takahashi, T., Hangaishi, A., Tanaka, K., Kurokawa, M., Tanaka, T., Mitani, K., Yazaki, Y. Blood (1994) [Pubmed]
 
WikiGenes - Universities