Involvement of the GLUT 3 transporter in myogenic regulation.
We have recently demonstrated a close relationship between the GLUT 3 transporter and the myogenic ability of rat skeletal L6 myoblasts [1]. This investigation examined the effects of over- and under-expression of the GLUT 3 transporter on both biochemical and morphological differentiation. L6 transfectants expressing two to five times the normal L6 GLUT 3 transcript level were impaired in the expression of myogenesis-associated genes, such as myogenin, MLC, MHC and TnT, and in myotube formation. Similar defects were also observed in myoblast mutants expressing less than 20% of the normal GLUT 3 level. Forced expression of an exogenous GLUT 3 cDNA could partially rescue the myogenic defect of these GLUT 3 mutants. However, such myogenic defects were not observed in L6 GLUT 3 antisense transfectants expressing 39% of the normal L6 GLUT 3 level. These data suggest that myogenic differentiation will proceed only within a critical level of the GLUT 3 transporter. The optimal GLUT 3 content for myogenesis ranges from around 2 x 10(5) to 5 x 10(5) molecules per cell in day 2 cultures; GLUT 3 levels outside this range have a negative effect on myogenesis. Our data suggest that GLUT 3 may regulate myogenesis by modulating the levels of signal transducers required for expression of myogenin and muscle-specific contractile protein genes.[1]References
- Involvement of the GLUT 3 transporter in myogenic regulation. Broydell, M., Mazzuca, D.M., Abidi, F., Kudo, P.A., Lo, T.C. Biochem. Mol. Biol. Int. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg