The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

SLC2A3  -  solute carrier family 2 (facilitated...

Homo sapiens

Synonyms: GLUT-3, GLUT3, Glucose transporter type 3, brain, Solute carrier family 2, facilitated glucose transporter member 3
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of SLC2A3


Psychiatry related information on SLC2A3


High impact information on SLC2A3


Chemical compound and disease context of SLC2A3


Biological context of SLC2A3

  • METHODS: The transport of L-(14)C-DHA in human chondrocytes was analyzed under various conditions, including the use of RNA interference (RNAi), to determine the role of glucose transporter 1 (GLUT-1) and GLUT-3 in L-14C-DHA transport and to evaluate the effects of physiologically relevant oxygen tensions on L-14C-DHA transport [10].
  • The region of facilitative glucose transporter nucleotide sequence homology in the GLUT6 transcript may have arisen by insertion of a reverse-transcribed GLUT3 transcript into the untranslated region of another gene [11].
  • Inspection of the predicted amino acid sequence of this region reveals that GLUTs 1, 3, and 4 (high-affinity glucose transporters) contain a conserved QLS motif in this helix (residues 277-279 in human GLUT3) [12].
  • The liver-type (GLUT2) and brain-type (GLUT3) human facilitative glucose transporters exhibit distinct kinetics (Km values for deoxyglucose transport of approximately 11 mM and approximately 1.5 mM, respectively) and patterns of substrate transport (GLUT2 is capable of D-fructose transport, while GLUT3 is not) [12].
  • Our results show that GLUT-1, GLUT-3, and GLUT-4 seem to be of importance during muscle fiber growth and development [13].

Anatomical context of SLC2A3


Associations of SLC2A3 with chemical compounds


Physical interactions of SLC2A3

  • Progesterone produced a small increase in transport at the Km corresponding to GLUT1/4, and combined 17beta-estradiol and progesterone produced a small increase in transport at the Km corresponding to GLUT3 and a large increase in transport at the Km corresponding to GLUT1/4 [22].
  • Moreover, D-glucose and maltose competitively inhibit fructose transport by GLUT2 and galactose transport by GLUT3, indicating that the transport of the alternative substrates for these transporters is likely to be mediated by the same outward-facing sugar-binding site used by glucose [23].

Co-localisations of SLC2A3


Regulatory relationships of SLC2A3

  • Recent studies have shown that GLUT1 and GLUT3 are both expressed in chondrocytes and their HIF-1alpha-mediated transcription may be dually stimulated in response to hypoxia and low glucose conditions which in turn promote anaerobic glycolysis in favor of oxidative phosphorylation [1].
  • To determine if the functional unit of the glucose transporter was a monomer or higher-order multimer, the high-affinity transporter GLUT3 was coexpressed with either the low-affinity GLUT2 or a GLUT3 mutant which contained a transport inactivating Trp410-->Leu substitution [25].
  • Our data suggest that GLUT 3 may regulate myogenesis by modulating the levels of signal transducers required for expression of myogenin and muscle-specific contractile protein genes [26].

Other interactions of SLC2A3

  • Based on the RNAi results, GLUT-1 mediated, at least in part, the uptake of DHA, whereas GLUT-3 had a minimal effect on DHA transport [10].
  • The agonist-mediated stimulation in glucose uptake was attributable to an increase in the plasma membrane content of GLUT1, GLUT3, and GLUT4 [27].
  • The sequence of a partial-length GLUT6 cDNA having an insert of 3.4 kilobase pairs revealed a region of 1.5 kilobase pairs that has 79.6% identity with the human brain/GLUT3 facilitative glucose transporter cDNA [11].
  • GLUT 5 mRNA was expressed in 2-fold greater abundance in macrophages and foam cells than that observed for GLUT 1 mRNA, while the level of GLUT 3 mRNA was intermediate.This facilitative glucose transporters are differentially expressed and regulated in human leukocytes in a pattern that could facilitate cellular functions [21].
  • Western blotting demonstrated IRS-1, IRS-2 and GLUT-3 proteins in the human testis [28].

Analytical, diagnostic and therapeutic context of SLC2A3


  1. Hypoxia inducible factor-1 and facilitative glucose transporters GLUT1 and GLUT3: putative molecular components of the oxygen and glucose sensing apparatus in articular chondrocytes. Mobasheri, A., Richardson, S., Mobasheri, R., Shakibaei, M., Hoyland, J.A. Histol. Histopathol. (2005) [Pubmed]
  2. Sustained hypoglycemia affects glucose transporter expression of human blood leukocytes. Korgun, E.T., Demir, R., Sedlmayr, P., Desoye, G., Arikan, G.M., Puerstner, P., Haeusler, M., Dohr, G., Skofitsch, G., Hahn, T. Blood Cells Mol. Dis. (2002) [Pubmed]
  3. Regenerating human muscle fibres express GLUT3 protein. Gaster, M., Beck-Nielsen, H., Schrøder, H.D. Pflugers Arch. (2002) [Pubmed]
  4. Immunolocalization of glucose transporter 1 and 3 in the placenta: application to cytodiagnosis of Papanicolaou smear. Sato, M., Nakamura, Y., Sogawa, T., Yang, Q., Taniguchi, T., Taniguchi, E., Kagiya, T., Nakamura, M., Mori, I., Kakudo, K. Diagn. Cytopathol. (2002) [Pubmed]
  5. The ubiquitous glucose transporter GLUT-1 is a receptor for HTLV. Manel, N., Kim, F.J., Kinet, S., Taylor, N., Sitbon, M., Battini, J.L. Cell (2003) [Pubmed]
  6. Decreased concentrations of GLUT1 and GLUT3 glucose transporters in the brains of patients with Alzheimer's disease. Simpson, I.A., Chundu, K.R., Davies-Hill, T., Honer, W.G., Davies, P. Ann. Neurol. (1994) [Pubmed]
  7. Coexpression of glucose transporters and glucokinase in Xenopus oocytes indicates that both glucose transport and phosphorylation determine glucose utilization. Morita, H., Yano, Y., Niswender, K.D., May, J.M., Whitesell, R.R., Wu, L., Printz, R.L., Granner, D.K., Magnuson, M.A., Powers, A.C. J. Clin. Invest. (1994) [Pubmed]
  8. Thrombin stimulates glucose transport in human platelets via the translocation of the glucose transporter GLUT-3 from alpha-granules to the cell surface. Heijnen, H.F., Oorschot, V., Sixma, J.J., Slot, J.W., James, D.E. J. Cell Biol. (1997) [Pubmed]
  9. Identification of hypoxically inducible mRNAs in HeLa cells using differential-display PCR. Role of hypoxia-inducible factor-1. O'Rourke, J.F., Pugh, C.W., Bartlett, S.M., Ratcliffe, P.J. Eur. J. Biochem. (1996) [Pubmed]
  10. Dehydroascorbate transport in human chondrocytes is regulated by hypoxia and is a physiologically relevant source of ascorbic acid in the joint. McNulty, A.L., Stabler, T.V., Vail, T.P., McDaniel, G.E., Kraus, V.B. Arthritis Rheum. (2005) [Pubmed]
  11. Human facilitative glucose transporters. Isolation, functional characterization, and gene localization of cDNAs encoding an isoform (GLUT5) expressed in small intestine, kidney, muscle, and adipose tissue and an unusual glucose transporter pseudogene-like sequence (GLUT6). Kayano, T., Burant, C.F., Fukumoto, H., Gould, G.W., Fan, Y.S., Eddy, R.L., Byers, M.G., Shows, T.B., Seino, S., Bell, G.I. J. Biol. Chem. (1990) [Pubmed]
  12. QLS motif in transmembrane helix VII of the glucose transporter family interacts with the C-1 position of D-glucose and is involved in substrate selection at the exofacial binding site. Seatter, M.J., De la Rue, S.A., Porter, L.M., Gould, G.W. Biochemistry (1998) [Pubmed]
  13. Glucose transporter expression in human skeletal muscle fibers. Gaster, M., Handberg, A., Beck-Nielsen, H., Schroder, H.D. Am. J. Physiol. Endocrinol. Metab. (2000) [Pubmed]
  14. Glucose uptake via glucose transporter 3 by human platelets is regulated by protein kinase B. Ferreira, I.A., Mocking, A.I., Urbanus, R.T., Varlack, S., Wnuk, M., Akkerman, J.W. J. Biol. Chem. (2005) [Pubmed]
  15. Constitutive activation of protein kinase B alpha by membrane targeting promotes glucose and system A amino acid transport, protein synthesis, and inactivation of glycogen synthase kinase 3 in L6 muscle cells. Hajduch, E., Alessi, D.R., Hemmings, B.A., Hundal, H.S. Diabetes (1998) [Pubmed]
  16. Cytokine regulation of facilitated glucose transport in human articular chondrocytes. Shikhman, A.R., Brinson, D.C., Valbracht, J., Lotz, M.K. J. Immunol. (2001) [Pubmed]
  17. The GLUT3 glucose transporter isoform is differentially expressed within human placental cell types. Hauguel-de Mouzon, S., Challier, J.C., Kacemi, A., Caüzac, M., Malek, A., Girard, J. J. Clin. Endocrinol. Metab. (1997) [Pubmed]
  18. Intracellular organization of insulin signaling and GLUT4 translocation. Watson, R.T., Pessin, J.E. Recent Prog. Horm. Res. (2001) [Pubmed]
  19. Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. Rumsey, S.C., Kwon, O., Xu, G.W., Burant, C.F., Simpson, I., Levine, M. J. Biol. Chem. (1997) [Pubmed]
  20. Glucose transporter proteins (GLUT) in human endometrium: expression, regulation, and function throughout the menstrual cycle and in early pregnancy. von Wolff, M., Ursel, S., Hahn, U., Steldinger, R., Strowitzki, T. J. Clin. Endocrinol. Metab. (2003) [Pubmed]
  21. Facilitative glucose transporter gene expression in human lymphocytes, monocytes, and macrophages: a role for GLUT isoforms 1, 3, and 5 in the immune response and foam cell formation. Fu, Y., Maianu, L., Melbert, B.R., Garvey, W.T. Blood Cells Mol. Dis. (2004) [Pubmed]
  22. Estrogen and progesterone up-regulate glucose transporter expression in ZR-75-1 human breast cancer cells. Medina, R.A., Meneses, A.M., Vera, J.C., Guzman, C., Nualart, F., Astuya, A., García, M.A., Kato, S., Carvajal, A., Pinto, M., Owen, G.I. Endocrinology (2003) [Pubmed]
  23. Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors. Colville, C.A., Seatter, M.J., Jess, T.J., Gould, G.W., Thomas, H.M. Biochem. J. (1993) [Pubmed]
  24. Hexose transporters GLUT1 and GLUT3 are colocalized with hexokinase I in caveolae microdomains of rat spermatogenic cells. Rauch, M.C., Ocampo, M.E., Bohle, J., Amthauer, R., Yáñez, A.J., Rodríguez-Gil, J.E., Slebe, J.C., Reyes, J.G., Concha, I.I. J. Cell. Physiol. (2006) [Pubmed]
  25. Mammalian facilitative glucose transporters: evidence for similar substrate recognition sites in functionally monomeric proteins. Burant, C.F., Bell, G.I. Biochemistry (1992) [Pubmed]
  26. Involvement of the GLUT 3 transporter in myogenic regulation. Broydell, M., Mazzuca, D.M., Abidi, F., Kudo, P.A., Lo, T.C. Biochem. Mol. Biol. Int. (1997) [Pubmed]
  27. Serotonin (5-Hydroxytryptamine), a novel regulator of glucose transport in rat skeletal muscle. Hajduch, E., Rencurel, F., Balendran, A., Batty, I.H., Downes, C.P., Hundal, H.S. J. Biol. Chem. (1999) [Pubmed]
  28. Expression of insulin receptor substrates 1-3, glucose transporters GLUT-1-4, signal regulatory protein 1alpha, phosphatidylinositol 3-kinase and protein kinase B at the protein level in the human testis. Kokk, K., Veräjänkorva, E., Laato, M., Wu, X.K., Tapfer, H., Pöllänen, P. Anatomical science international / Japanese Association of Anatomists. (2005) [Pubmed]
  29. Expression of facilitative glucose transporter isoforms in lung carcinomas: its relation to histologic type, differentiation grade, and tumor stage. Ito, T., Noguchi, Y., Satoh, S., Hayashi, H., Inayama, Y., Kitamura, H. Mod. Pathol. (1998) [Pubmed]
  30. Molecular characterization and partial cDNA cloning of facilitative glucose transporters expressed in human articular chondrocytes; stimulation of 2-deoxyglucose uptake by IGF-I and elevated MMP-2 secretion by glucose deprivation. Richardson, S., Neama, G., Phillips, T., Bell, S., Carter, S.D., Moley, K.H., Moley, J.F., Vannucci, S.J., Mobasheri, A. Osteoarthr. Cartil. (2003) [Pubmed]
  31. Distribution of the glucose transporters in human brain tumors. Nishioka, T., Oda, Y., Seino, Y., Yamamoto, T., Inagaki, N., Yano, H., Imura, H., Shigemoto, R., Kikuchi, H. Cancer Res. (1992) [Pubmed]
  32. Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms. Gould, G.W., Thomas, H.M., Jess, T.J., Bell, G.I. Biochemistry (1991) [Pubmed]
WikiGenes - Universities