The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)



Gene Review

MYOD1  -  myogenic differentiation 1

Homo sapiens

Synonyms: BHLHC1, Class C basic helix-loop-helix protein 1, MYF3, MYOD, Myf-3, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of MYOD1

  • RESULTS: The median ratios (and interquartile ranges) of MSP-amplified GSTP1 to MYOD1 in resected benign hyperplastic prostatic tissue, intraepithelial neoplasia, and adenocarcinoma were 0 (range, 0-0.1), 1.4 (range, 0- 45.9), and 250.8 (range, 53.5-697.5), respectively; all of these values were statistically significantly different (P< .001) [1].
  • Because the rhabdomyosarcoma locus maps to 11p15.5, MYOD1 is very unlikely to be the primary site of alteration in these tumors [2].
  • Our results suggest that serological detection of MYOD1 promoter hypermethylation may be of potential use as a prognostic marker for discriminating cervical cancer patients at high risk for lymph node metastasis or relapse [3].
  • Interestingly, pilocytic astrocytomas showed no evidence of CpG island hypermethylation, but were significantly hypomethylated, relative to control tissues, at MYOD1 [4].
  • Molecular characterization of Beckwith-Wiedemann syndrome (BWS) patients with partial duplication of chromosome 11p excludes the gene MYOD1 from the BWS region [5].

Psychiatry related information on MYOD1


High impact information on MYOD1


Chemical compound and disease context of MYOD1


Biological context of MYOD1

  • Rhabdomyosarcoma-associated locus and MYOD1 are syntenic but separate loci on the short arm of human chromosome 11 [2].
  • We have combined physical mapping of the human locus with meiotic and physical mapping in the mouse, together with synteny homologies between the two species, to compare the physical relationship between MYOD1 and the genetically ascertained human rhabdomyosarcoma-associated locus [2].
  • Further, these analyses identify two syntenic clusters of muscle-associated genes on the short arm of human chromosome 11, one in the region of rhabdomyosarcoma locus that includes IGF2 and TH and the second the tightly linked MYOD1 and LDHA loci, which have been evolutionarily conserved in homologous regions of both the mouse and the rat genomes [2].
  • Methylation of MYOD1 was detected more frequently in advanced stage [3].
  • Myocyte enhancer factor 2 acetylation by p300 enhances its DNA binding activity, transcriptional activity, and myogenic differentiation [16].

Anatomical context of MYOD1


Associations of MYOD1 with chemical compounds


Physical interactions of MYOD1

  • These results suggest that some of the targets of protein phosphatases 1 and 2A may include transcription factors capable of forming AP1 complexes and that these factors may play an important role during myogenic differentiation [26].

Enzymatic interactions of MYOD1

  • EXPERIMENTAL DESIGN: MGMT hypermethylation, expressed as the ratio between methylated MGMT to unmethylated MYOD1 in genomic DNA, was analyzed in normal and matching tumor tissue from 90 patients with NSCLC, and a control group of 10 patients without cancer using a methylation-specific fluorogenic Real-Time PCR (Taqman) system [27].

Regulatory relationships of MYOD1


Other interactions of MYOD1


Analytical, diagnostic and therapeutic context of MYOD1


  1. Quantitation of GSTP1 methylation in non-neoplastic prostatic tissue and organ-confined prostate adenocarcinoma. Jerónimo, C., Usadel, H., Henrique, R., Oliveira, J., Lopes, C., Nelson, W.G., Sidransky, D. J. Natl. Cancer Inst. (2001) [Pubmed]
  2. Rhabdomyosarcoma-associated locus and MYOD1 are syntenic but separate loci on the short arm of human chromosome 11. Scrable, H.J., Johnson, D.K., Rinchik, E.M., Cavenee, W.K. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  3. DNA methylation in serum and tumors of cervical cancer patients. Widschwendter, A., Müller, H.M., Fiegl, H., Ivarsson, L., Wiedemair, A., Müller-Holzner, E., Goebel, G., Marth, C., Widschwendter, M. Clin. Cancer Res. (2004) [Pubmed]
  4. Distinct methylation profiles of glioma subtypes. Uhlmann, K., Rohde, K., Zeller, C., Szymas, J., Vogel, S., Marczinek, K., Thiel, G., Nürnberg, P., Laird, P.W. Int. J. Cancer (2003) [Pubmed]
  5. Molecular characterization of Beckwith-Wiedemann syndrome (BWS) patients with partial duplication of chromosome 11p excludes the gene MYOD1 from the BWS region. Weksberg, R., Glaves, M., Teshima, I., Waziri, M., Patil, S., Williams, B.R. Genomics (1990) [Pubmed]
  6. Id: a negative regulator of helix-loop-helix DNA binding proteins. Control of terminal myogenic differentiation. Benezra, R., Davis, R.L., Lassar, A., Tapscott, S., Thayer, M., Lockshon, D., Weintraub, H. Ann. N. Y. Acad. Sci. (1990) [Pubmed]
  7. Combinatorial signaling by Sonic hedgehog and Wnt family members induces myogenic bHLH gene expression in the somite. Münsterberg, A.E., Kitajewski, J., Bumcrot, D.A., McMahon, A.P., Lassar, A.B. Genes Dev. (1995) [Pubmed]
  8. High efficiency myogenic conversion of human fibroblasts by adenoviral vector-mediated MyoD gene transfer. An alternative strategy for ex vivo gene therapy of primary myopathies. Lattanzi, L., Salvatori, G., Coletta, M., Sonnino, C., Cusella De Angelis, M.G., Gioglio, L., Murry, C.E., Kelly, R., Ferrari, G., Molinaro, M., Crescenzi, M., Mavilio, F., Cossu, G. J. Clin. Invest. (1998) [Pubmed]
  9. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. Rønnov-Jessen, L., Petersen, O.W., Koteliansky, V.E., Bissell, M.J. J. Clin. Invest. (1995) [Pubmed]
  10. Cell cycle exit upon myogenic differentiation. Walsh, K., Perlman, H. Curr. Opin. Genet. Dev. (1997) [Pubmed]
  11. Induction of myogenic differentiation in human rhabdomyosarcoma cells by ionising radiation, N,N-dimethylformamide and their combination. Nicoletti, G., De Giovanni, C., Landuzzi, L., Simone, G., Rocchi, P., Nanni, P., Lollini, P.L. Br. J. Cancer (1992) [Pubmed]
  12. Induction of myogenic differentiation in a human rhabdomyosarcoma cell line by phenylacetate. Cinatl, J., Cinatl, J., Herneiz, P., Rabenau, H., Hovak, M., Benda, R., Gümbel, H.O., Kornhuber, B., Doerr, H.W. Cancer Lett. (1994) [Pubmed]
  13. From a classic approach in cancer chemotherapy towards differentiation therapy: acyclic and cyclic seven-membered 5-fluorouracil O,N-acetals. Campos, J., Domínguez, J.F., Gallo, M.A., Espinosa, A. Curr. Pharm. Des. (2000) [Pubmed]
  14. Neuromuscular choristoma. Mitchell, A., Scheithauer, B.W., Ostertag, H., Sepehrnia, A., Sav, A. Am. J. Clin. Pathol. (1995) [Pubmed]
  15. GR-891: a novel 5-fluorouracil acyclonucleoside prodrug for differentiation therapy in rhabdomyosarcoma cells. Marchal, J.A., Prados, J., Melguizo, C., Gómez, J.A., Campos, J., Gallo, M.A., Espinosa, A., Arena, N., Aránega, A. Br. J. Cancer (1999) [Pubmed]
  16. Myocyte enhancer factor 2 acetylation by p300 enhances its DNA binding activity, transcriptional activity, and myogenic differentiation. Ma, K., Chan, J.K., Zhu, G., Wu, Z. Mol. Cell. Biol. (2005) [Pubmed]
  17. Hypermethylation of the MYOD1 gene is a novel prognostic factor in patients with colorectal cancer. Hiranuma, C., Kawakami, K., Oyama, K., Ota, N., Omura, K., Watanabe, G. Int. J. Mol. Med. (2004) [Pubmed]
  18. Differential expression of myogenic determination genes in muscle cells: possible autoactivation by the Myf gene products. Braun, T., Bober, E., Buschhausen-Denker, G., Kohtz, S., Grzeschik, K.H., Arnold, H.H., Kotz, S. EMBO J. (1989) [Pubmed]
  19. A kinase domain-truncated type I receptor blocks bone morphogenetic protein-2-induced signal transduction in C2C12 myoblasts. Namiki, M., Akiyama, S., Katagiri, T., Suzuki, A., Ueno, N., Yamaji, N., Rosen, V., Wozney, J.M., Suda, T. J. Biol. Chem. (1997) [Pubmed]
  20. cAMP effects on myogenic gene expression in rhabdomyosarcoma cells. Wasserman, L.M., Newsham, I., Huang, H.J., Cavenee, W.K. Exp. Cell Res. (1996) [Pubmed]
  21. Proliferation and differentiation of human fetal myoblasts is regulated by PDGF-BB. Jin, P., Farmer, K., Ringertz, N.R., Sejersen, T. Differentiation (1993) [Pubmed]
  22. Pharmacologic inhibition of cyclin-dependent kinase 4/6 activity arrests proliferation in myoblasts and rhabdomyosarcoma-derived cells. Saab, R., Bills, J.L., Miceli, A.P., Anderson, C.M., Khoury, J.D., Fry, D.W., Navid, F., Houghton, P.J., Skapek, S.X. Mol. Cancer Ther. (2006) [Pubmed]
  23. The human MYOD1 transgene is suppressed by 5-bromodeoxyuridine in mouse myoblasts. Ogino, H., Satou, W., Fujii, M., Suzuki, T., He, Y., Michishita, E., Ayusawa, D. J. Biochem. (2002) [Pubmed]
  24. Myogenic signaling of phosphatidylinositol 3-kinase requires the serine-threonine kinase Akt/protein kinase B. Jiang, B.H., Aoki, M., Zheng, J.Z., Li, J., Vogt, P.K. Proc. Natl. Acad. Sci. U.S.A. (1999) [Pubmed]
  25. Characterization of 5'-regulatory region of human myostatin gene: regulation by dexamethasone in vitro. Ma, K., Mallidis, C., Artaza, J., Taylor, W., Gonzalez-Cadavid, N., Bhasin, S. Am. J. Physiol. Endocrinol. Metab. (2001) [Pubmed]
  26. Inhibition of myogenesis by okadaic acid, an inhibitor of protein phosphatases, 1 and 2A, correlates with the induction of AP1. Park, K., Chung, M., Kim, S.J. J. Biol. Chem. (1992) [Pubmed]
  27. Quantitative O(6)-methylguanine DNA methyltransferase methylation analysis in curatively resected non-small cell lung cancer: associations with clinical outcome. Brabender, J., Usadel, H., Metzger, R., Schneider, P.M., Park, J., Salonga, D., Tsao-Wei, D.D., Groshen, S., Lord, R.V., Takebe, N., Schneider, S., Hölscher, A.H., Danenberg, K.D., Danenberg, P.V. Clin. Cancer Res. (2003) [Pubmed]
  28. Elevated cyclins and cyclin-dependent kinase activity in the rhabdomyosarcoma cell line RD. Knudsen, E.S., Pazzagli, C., Born, T.L., Bertolaet, B.L., Knudsen, K.E., Arden, K.C., Henry, R.R., Feramisco, J.R. Cancer Res. (1998) [Pubmed]
  29. Restoration of p16INK4A protein induces myogenic differentiation in RD rhabdomyosarcoma cells. Urashima, M., Teoh, G., Akiyama, M., Yuza, Y., Anderson, K.C., Maekawa, K. Br. J. Cancer (1999) [Pubmed]
  30. Recombinant human bone morphogenetic protein-2 stimulates osteoblastic maturation and inhibits myogenic differentiation in vitro. Yamaguchi, A., Katagiri, T., Ikeda, T., Wozney, J.M., Rosen, V., Wang, E.A., Kahn, A.J., Suda, T., Yoshiki, S. J. Cell Biol. (1991) [Pubmed]
  31. The muscle regulatory and structural protein MLP is a cytoskeletal binding partner of betaI-spectrin. Flick, M.J., Konieczny, S.F. J. Cell. Sci. (2000) [Pubmed]
  32. The four human muscle regulatory helix-loop-helix proteins Myf3-Myf6 exhibit similar hetero-dimerization and DNA binding properties. Braun, T., Arnold, H.H. Nucleic Acids Res. (1991) [Pubmed]
  33. Telomerase reverse transcriptase promoter regulation during myogenic differentiation of human RD rhabdomyosarcoma cells. Ma, H., Urquidi, V., Wong, J., Kleeman, J., Goodison, S. Mol. Cancer Res. (2003) [Pubmed]
  34. Expression of members of the myf gene family in human rhabdomyosarcomas. Clark, J., Rocques, P.J., Braun, T., Bober, E., Arnold, H.H., Fisher, C., Fletcher, C., Brown, K., Gusterson, B.A., Carter, R.L. Br. J. Cancer (1991) [Pubmed]
  35. DNA hypermethylation in the normal colonic mucosa of patients with colorectal cancer. Kawakami, K., Ruszkiewicz, A., Bennett, G., Moore, J., Grieu, F., Watanabe, G., Iacopetta, B. Br. J. Cancer (2006) [Pubmed]
  36. TPA-induced differentiation of human rhabdomyosarcoma cells: expression of the myogenic regulatory factors. Bouché, M., Senni, M.I., Grossi, A.M., Zappelli, F., Polimeni, M., Arnold, H.H., Cossu, G., Molinaro, M. Exp. Cell Res. (1993) [Pubmed]
  37. Identification and characterization of a ventricular-specific avian myosin heavy chain, VMHC1: expression in differentiating cardiac and skeletal muscle. Bisaha, J.G., Bader, D. Dev. Biol. (1991) [Pubmed]
  38. Cryotherapy modifies synthetic activity and differentiation of keloidal fibroblasts in vitro. Dalkowski, A., Fimmel, S., Beutler, C., Zouboulis, C.h.C. Exp. Dermatol. (2003) [Pubmed]
  39. Skeletal myogenic differentiation of mesenchymal stem cells isolated from human umbilical cord blood. Gang, E.J., Jeong, J.A., Hong, S.H., Hwang, S.H., Kim, S.W., Yang, I.H., Ahn, C., Han, H., Kim, H. Stem Cells (2004) [Pubmed]
  40. Evidence that DNA methylation imbalance is not involved in the development of malignant mesothelioma. Bagwe, A.N., Kay, P.H., Spagnolo, D.V. Anticancer Res. (1997) [Pubmed]
WikiGenes - Universities