The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Methylmalonyl coenzyme A selectivity of cloned and expressed acyltransferase and beta-ketoacyl synthase domains of mycocerosic acid synthase from Mycobacterium bovis BCG.

Methyl-branched fatty acids and polyketides occur in a variety of living organisms. Previous studies have established that multifunctional enzymes use methylmalonyl coenzyme A (CoA) as the substrate to generate methyl-branched products such as mycocerosic acids and polyketides. However, we do not know which of the component activities show selectivity for methylmalonyl-CoA in any biological system. A comparison of homologies of the domains of the multifunctional synthases that selectively use malonyl-CoA or methylmalonyl-CoA suggested that the acyltransferase (AT) and beta-ketoacyl synthase (KS) domains might be responsible for the substrate selectivity. To test this hypothesis, we expressed the AT and KS domains of the mycocerosic acid synthase (MAS) gene from Mycobacterium bovis BCG in Escherichia coli and examined whether they confer to synthases that normally do not use methylmalonyl-CoA the ability to incorporate methylmalonyl-CoA into fatty acids. Both the AT and the KS domains of MAS showed selectivity for methylmalonyl-CoA over malonyl-CoA. Acyl carrier protein (ACP)-dependent elongation of the n-C12 acyl primer mainly by one methylmalonyl-CoA unit was catalyzed by an E. coli fatty acid synthase preparation only in the presence of the expressed MAS domains. An ACP-dependent elongation of the n-C20 acyl primer by one methylmalonyl-CoA extender unit was catalyzed by fatty acid synthase from Mycobacterium smegmatis only in the presence of the expressed MAS domains. These results show methylmalonyl-CoA selectivity for the AT and KS domains of MAS. These domains may be useful in producing novel polyketides by genetic engineering.[1]


WikiGenes - Universities