Involvement of integrins and the cytoskeleton in modulation of skeletal muscle glycogen synthesis by changes in cell volume.
Muscle glycogen synthesis is modulated by physiologically relevant changes in cell volume. We have investigated the possible involvement of integrin-extracellular matrix interactions in this process using primary cultures of rat skeletal muscle subject to hypo- or hyper-osmotic exposure with integrin binding peptide GRGDTP to disrupt integrin actions and the inactive analogue GRGESP as control. Osmotically induced increases (77%) and decreases (34%) in glycogen synthesis (D-[14C]glucose incorporation into glycogen) were prevented by GRGDTP (but not GRGESP) without affecting glucose transport. Cytoskeletal disruption with cytochalasin D or colchicine had similar effects to GRGDTP. Osmotically induced modulation of muscle glycogen synthesis involves integrin-extracellular matrix interactions and cytoskeletal elements, possibly as components of a cell-volume 'sensing' mechanism.[1]References
- Involvement of integrins and the cytoskeleton in modulation of skeletal muscle glycogen synthesis by changes in cell volume. Low, S.Y., Rennie, M.J., Taylor, P.M. FEBS Lett. (1997) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg