The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Overexpression of the Saccharomyces cerevisiae magnesium transport system confers resistance to aluminum ion.

Ionic aluminum (Al3+) is toxic to plants, microbes, fish, and animals, but the mechanism of its toxicity is unknown. We describe the isolation of two yeast genes (ALR1 and ALR2) which confer increased tolerance to Al3+ and Ga3+ ions when overexpressed while increasing strain sensitivity to Zn2+, Mn2+, Ni2+, Cu2+, Ca2+, and La3+ ions. The Alr proteins are homologous to the Salmonella typhimurium CorA protein, a bacterial Mg2+ and Co2+ transport system located in the periplasmic membrane. Yeast strains lacking ALR gene activity required additional Mg2+ for growth, and expression of either ALR1 or ALR2 corrected the Mg(2+)-requiring phenotype. The results suggest that the ALR genes encode the yeast uptake system for Mg2+ and other divalent cations. This hypothesis was supported by evidence that 57Co2+ accumulation was elevated in ALR-overexpressing strains and reduced in strains lacking ALR expression. ALR overexpression also overcame the inhibition of Co2+ uptake by Al3+ ions. The results indicate that aluminum toxicity to yeast occurs as a consequence of reduced Mg2+ influx via the Alr proteins. The molecular identification of the yeast Mg2+ transport system should lead to a better understanding of the regulation of Mg2+ homeostasis in eukaryote cells.[1]

References

 
WikiGenes - Universities