The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

The spermidine transport system is regulated by ligand inactivation, endocytosis, and by the Npr1p Ser/Thr protein kinase in Saccharomyces cerevisiae.

We have characterized the regulation of spermidine transport in yeast and identified some of the genes involved in its control. Disruption of the SPE2 gene encoding S-adenosylmethionine decarboxylase, which catalyzes an essential step in polyamine biosynthesis, upregulated the initial velocity of spermidine uptake in wild-type cells as well as in the polyamine transport-deficient pcp1 mutants. Exogenous spermidine rapidly inactivated spermidine transport with a half-life of approximately 10-15 min via a process that did not require de novo protein synthesis but was accelerated by cycloheximide addition. Conversely, reactivation of spermidine influx upon polyamine deprivation required active protein synthesis. The stability of polyamine carrier activity was increased 2-fold in polyamine-depleted spe2 deletion mutants, indicating that endogenous polyamines also contribute to the down-regulation of spermidine transport. Ligand-mediated repression of spermidine transport was delayed in end3 and end4 mutants that are deficient in the initial steps of the endocytic pathway, and spermidine uptake activity was increased 4- to 5-fold in end3 mutants relative to parental cells, although the stability of the transport system was similar in both strains. Disruption of the NPR1 gene, which encodes a putative Ser/Thr protein kinase essential for the reactivation of several nitrogen permeases, resulted in a 3-fold decrease in spermidine transport in NH4(+)-rich media but did not prevent its down-regulation by spermidine. The defect in spermidine transport was more pronounced in NH4(+)- than proline-grown npr1 cells, suggesting that NPR1 protects against nitrogen catabolite repression of polyamine uptake activity. These results suggest that (a) the polyamine carrier is an unstable protein subject to down-regulation by spermidine via a process involving ligand inactivation followed by endocytosis and that (b) NPR1 expression fully prevents nitrogen catabolite repression of polyamine transport, unlike the role predicted for that gene by the inactivation/reactivation model proposed for other nitrogen permeases.[1]


WikiGenes - Universities