The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Structural characterization of arachidonyl radicals formed by prostaglandin H synthase-2 and prostaglandin H synthase-1 reconstituted with mangano protoporphyrin IX.

A tyrosyl radical generated in the peroxidase cycle of prostaglandin H synthase-1 (PGHS-1) can serve as the initial oxidant for arachidonic acid (AA) in the cyclooxygenase reaction. Peroxides also induce radical formation in prostaglandin H synthase-2 (PGHS-2) and in PGHS-1 reconstituted with mangano protoporphyrin IX (MnPGHS-1), but the EPR spectra of these radicals are distinct from the initial tyrosyl radical in PGHS-1. We have examined the ability of the radicals in PGHS-2 and MnPGHS-1 to oxidize AA, using single-turnover EPR studies. One wide singlet tyrosyl radical with an overall EPR line width of 29-31 gauss (G) was generated by reaction of PGHS-2 with ethyl hydroperoxide. Anaerobic addition of AA to PGHS-2 immediately after formation of this radical led to its disappearance and emergence of an AA radical (AA.) with a 7-line EPR, substantiated by experiments using octadeuterated AA. Subsequent addition of oxygen resulted in regeneration of the tyrosyl radical. In contrast, the peroxide-generated radical (a 21G narrow singlet) in a Y371F PGHS-2 mutant lacking cyclooxygenase activity failed to react with AA. The peroxide-generated radical in MnPGHS-1 exhibited a line width of 36-38G, but was also able to convert AA to an AA. with an EPR spectrum similar to that found with PGHS-2. These results indicate that the peroxide-generated radicals in PGHS-2 and MnPGHS-1 can each serve as immediate oxidants of AA to form the same carbon-centered fatty acid radical that subsequently reacts with oxygen to form a hydroperoxide. The EPR data for the AA-derived radical formed by PGHS-2 and MnPGHS-1 could be accounted for by a planar pentadienyl radical with two strongly interacting beta-protons at C10 of AA. These results support a functional role for peroxide-generated radicals in cyclooxygenase catalysis by both PGHS isoforms and provide important structural characterization of the carbon-centered AA..[1]

References

 
WikiGenes - Universities