The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Impaired activity of the bile canalicular organic anion transporter (Mrp2/cmoat) is not the main cause of ethinylestradiol-induced cholestasis in the rat.

To test the hypothesis that impaired activity of the bile canalicular organic anion transporting system mrp2 (cmoat) is a key event in the etiology of 17alpha-ethinylestradiol (EE)-induced intrahepatic cholestasis in rats, EE (5 mg/kg subcutaneously daily) was administered to male normal Wistar (NW) and mrp2-deficient Groningen Yellow/Transport-deficient Wistar (GY/TR-) rats. Elevated plasma bilirubin levels in GY/TR- rats increased upon EE-treatment from 65 +/- 8.4 micromol/L to 183 +/- 22.7 micromol/L within 3 days, whereas bilirubin levels remained unaffected in NW rats. Biliary bilirubin secretion was 1.5-fold increased in NW rats but remained unaltered in GY/TR- rats. Plasma bile salt concentrations remained unchanged in both strains, although hepatic levels of the sinusoidal Na+-taurocholate cotransporting protein (ntcp) were markedly reduced. Biliary secretion of endogenous bile salt was not affected in either strain. A clear reduction of mrp2 levels in liver plasma membranes of NW rats was found after 3 days of treatment. The bile salt-independent fraction of bile flow (BSIF) was reduced from 2.6 to 2.0 microL/min/100 g body weight in NW rats with a concomitant 62% reduction of biliary glutathione secretion. The absence of mrp2 and biliary glutathione in GY/TR- rats did not prevent induction of EE-cholestasis; a similar absolute reduction of BSIF, i.e., from 1.1 to 0.6 microL/min/100 g bodyweight, was found in these animals. EE treatment caused a reduction of the maximal biliary secretory rate (S(RM)) of the mrp2 substrate, dibromosulphthalein (DBSP), from 1,040 to 695 nmol/min/100 g body weight (-38%) in NW rats and from 615 to 327 nmol/min/100 g body weight (-46%) in GY/TR- rats. These results demonstrate that inhibition of mrp2 activity and/or biliary glutathione secretion is not the main cause of EE-induced cholestasis in rats. The data indicate that alternative pathways exist for the biliary secretion of bilirubin and related organic anions that are also affected by EE.[1]

References

  1. Impaired activity of the bile canalicular organic anion transporter (Mrp2/cmoat) is not the main cause of ethinylestradiol-induced cholestasis in the rat. Koopen, N.R., Wolters, H., Havinga, R., Vonk, R.J., Jansen, P.L., Müller, M., Kuipers, F. Hepatology (1998) [Pubmed]
 
WikiGenes - Universities