The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Pmt1 mannosyl transferase is involved in cell wall incorporation of several proteins in Saccharomyces cerevisiae.

We constructed hybrid proteins containing a plant alpha-galactosidase fused to various C-terminal moieties of the hypoxic Srp1p; this allowed us to identify a cell wall-bound form of Srp1p. We showed that the last 30 amino acids of Srp1p, but not the last 16, contain sufficient information to signal glycosyl-phosphatidylinositol anchor attachment and subsequent cell wall anchorage. The cell wall-bound form was shown to be linked by means of a beta1,6-glucose-containing side-chain. Pmt1p enzyme is known as a protein-O-mannosyltransferase that initiates the O-glycosidic chains on proteins. We found that a pmt1 deletion mutant was highly sensitive to zymolyase and that in this strain the alpha-galactosidase-Srp1 fusion proteins, an alpha-galactosidase-Sed1 hybrid protein and an alpha-galactosidase-alpha-agglutinin hybrid protein were absent from both the membrane and the cell wall fractions. However, the plasma membrane protein Gas1p still receives its glycosyl-phosphatidylinositol anchor in pmt1 cells, and in this mutant strain an alpha-galactosidase-Cwp2 fusion protein was found linked to the cell wall but devoid of beta1,6-glucan side-chain, indicating an alternative mechanism of cell wall anchorage.[1]

References

  1. Pmt1 mannosyl transferase is involved in cell wall incorporation of several proteins in Saccharomyces cerevisiae. Bourdineaud, J.P., van der Vaart, J.M., Donzeau, M., de Sampaïo, G., Verrips, C.T., Lauquin, G.J. Mol. Microbiol. (1998) [Pubmed]
 
WikiGenes - Universities