The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Aggregation of the human high affinity immunoglobulin G receptor (FcgammaRI) activates both tyrosine kinase and G protein-coupled phosphoinositide 3-kinase isoforms.

Phosphoinositide 3-kinases (PI3-kinases) play an important role in the generation of lipid second messengers and the transduction of a myriad of biological responses. Distinct isoforms have been shown to be exclusively activated either by tyrosine kinase-coupled or G protein-coupled receptors. We show here, however, that certain nonclassical receptors can couple to both tyrosine kinase- and G protein-dependent isoforms of PI3-kinase: thus, aggregation of FcgammaRI, the human high affinity IgG receptor, on monocytes unusually leads to activation of both of these types of PI3-kinase. After aggregation of FcgammaRI, phosphatidylinositol 3,4, 5-triphosphate (PIP3) levels rise rapidly in interferon gamma-primed cells, reaching a peak within 30 sec. Moreover, and in contrast to the situation observed after stimulation of these cells with either insulin or ATP, which exclusively activate the tyrosine kinase- and G protein- coupled forms of PI3-kinase, respectively, PIP3 levels remain elevated up to 15 min after receptor aggregation. We show here that although the initial peak results from transient activation of the p85-dependent p110 isoform of PI-3kinase, presumably through recruitment of tyrosine kinases by the gamma chain, the later sustained rise of PIP3 results from activation of the G protein betagamma subunit-sensitive isoform, p110gamma. This finding indicates that receptors lacking an intrinsic signaling motif, such as FcgammaRI, can recruit both tyrosine kinase and G protein-coupled intracellular signaling molecules and thereby initiate cellular responses.[1]

References

 
WikiGenes - Universities