Respiratory acidosis in carbonic anhydrase II-deficient mice.
To investigate the role of carbonic anhydrase (CA) II on pulmonary CO2 exchange, we analyzed arterial blood gases from CA II-deficient and normal control mice. CA II-deficient mice had a low arterial blood pH (7.18 +/- 0.06) and HCO3- concentration ([HCO3-]; 17.5 +/- 1.9 meq/l) and a high Pco2 (47.4 +/- 5.3 mmHg), consistent with mixed respiratory and metabolic acidosis. To eliminate the influence of metabolic acidosis on arterial blood gases, NaHCO3 (4 mmol/kg body weight) was given intraperitoneally, and arterial blood gases were analyzed 4 h later. Normal mice had a small increase in pH and were able to maintain Pco2 and [HCO3-]. The metabolic acidosis in CA II-deficient mice was corrected ([HCO3-], 22.9 +/- 2.4 meq/l), and respiratory acidosis became more profound (Pco2, 50.4 +/- 2.4 mmHg). These results indicate that CA II-deficient mice have a partial respiratory compensation for metabolic acidosis. We conclude that CA II-deficient mice have a mixed respiratory and metabolic acidosis. It is most likely that CO2 retention in these animals is due to CA II deficiency in both red blood cells and type II pneumocytes.[1]References
- Respiratory acidosis in carbonic anhydrase II-deficient mice. Lien, Y.H., Lai, L.W. Am. J. Physiol. (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg