The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The t(8;13)(p11;q11-12) rearrangement associated with an atypical myeloproliferative disorder fuses the fibroblast growth factor receptor 1 gene to a novel gene RAMP.

A recently described atypical myeloproliferative disorder is invariably associated with reciprocal translocations involving 8p11-12. The most common rearrangement is a t(8;13)(p11;q11-12). Here we determine that this translocation results in the fusion of the fibroblast growth factor receptor 1 gene (FGFR1), a member of the receptor tyrosine kinase family at 8p11, to a novel gene at 13q11-12 designated RAMP . The predicted RAMP protein exhibits strong homology to the product of a recently cloned candidate gene for X-linked mental retardation, DXS6673E . We also provide the first report of a novel, putative metal-binding motif, present as five tandem repeats in both RAMP and DXS6673E. RT-PCR detected only one of the two possible fusion transcripts, encoding a product in which the N-terminal 641 amino acids of RAMP become joined to the tyrosine kinase domain of FGFR1. Receptor tyrosine kinases are not commonly involved in the formation of tumour-specific fusion proteins. However, the previous reports of involvement of receptor tyrosine kinases in fusion proteins in non-Hodgkin's lymphoma, chronic myelomonocytic leukaemia and papillary thyroid carcinoma described similar rearrangements. By analogy with these, we propose that the RAMP-FGFR1 fusion product will contribute to progression of this myeloproliferative disorder by constitutive activation of tyrosine kinase function.[1]

References

  1. The t(8;13)(p11;q11-12) rearrangement associated with an atypical myeloproliferative disorder fuses the fibroblast growth factor receptor 1 gene to a novel gene RAMP. Smedley, D., Hamoudi, R., Clark, J., Warren, W., Abdul-Rauf, M., Somers, G., Venter, D., Fagan, K., Cooper, C., Shipley, J. Hum. Mol. Genet. (1998) [Pubmed]
 
WikiGenes - Universities