Kinetics and products of the TiO2 photocatalytic degradation of 2-chlorobiphenyl in water.
The light-induced degradation of 2-chlorobiphenyl (2-CB) under simulated solar irradiation has been investigated in aqueous solutions containing TiO2 suspensions as photocatalysts. The apparent quantum yield for an initial 2-CB concentration C0 = 3.8 micrograms/mL at the natural pH was ca. 0.005 The oxidation kinetics of 2-CB follows the Langmuir-Hinshelwood kinetic model at natural pH. The primary degradation of 2-CB follows a pseudo-first-order kinetics. Several reaction intermediates were identified using GC/FTIR/MS and ion chromatography. The products at the initial stage of the reaction were seven isomers of 2-chlorobiphenyl-ol and biphenyl-2-ol. These intermediates underwent further photocatalytic oxidation via aldehydes, ketones, and acids finally into CO2 and HCl. The formation and fate of some of these compounds under irradiation were also investigated. A reaction scheme involving hydroxyl radicals has been proposed.[1]References
- Kinetics and products of the TiO2 photocatalytic degradation of 2-chlorobiphenyl in water. Hong, C.S., Wang, Y., Bush, B. Chemosphere (1998) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg