The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Regulation of iron regulatory protein 1 during hypoxia and hypoxia/reoxygenation.

Given the important relationship between O2 and iron (Fenton chemistry) a study was undertaken to characterize the effects of hypoxia, as well as subsequent reoxygenation, on the iron-regulatory proteins 1 and 2 (IRP1 and IRP2) in a rat hepatoma cell line. IRP1 and IRP2 are cytosolic RNA-binding proteins that bind RNA stem-loops located in the 5'- or 3'-untranslated regions of specific mRNAs encoding proteins that are involved in iron homeostasis. In cells exposed to hypoxia, IRP1 RNA binding was decreased approximately 2. 8-fold after a 6-h exposure to 3% O2. Hypoxic inactivation of IRP1 was abolished when cells were pretreated with the iron chelator desferrioxamine, indicating a role for iron in inactivation. IRP1 inactivation was reversible since re-exposure of hypoxically-treated cells to 21% O2 increased RNA binding activity approximately 7-fold after 21 h with an increase in activity seen as early as 1-h post-reoxygenation. IRP1 protein levels were unaffected during hypoxia as well as during reoxygenation. Whereas the protein synthesis inhibitor cycloheximide did not block IRP1 inactivation during hypoxia, it completely blocked IRP1 reactivation during subsequent reoxygenation. Reactivation of IRP1 during reoxygenation was also partially blocked by the phosphatase inhibitor okadaic acid. Finally, reactivated IRP1 was found to be resistant to inactivation by exogenous iron known to down-regulate its activity during normoxia. These data demonstrate that IRP1 RNA binding activity is post-translationally regulated during hypoxia and hypoxia/reoxygenation. Regulation of IRP1 by changing oxygen tension may provide a novel mechanism for post-transcriptionally regulating gene expression under these stresses.[1]


WikiGenes - Universities